Supplementary Information

Hybrid host materials for highly efficient electrophosphorescence and thermally activated delayed fluorescence independent of the linkage mode

Chao Wu,‡a Qingxun Guo,‡b Wujun Ma,a Xiaoping Li,c Panlong Qiu,a Jianyong Hu,a Qiang Wang,*a Jiangshan Chenbd and Dongge Ma*béd

a Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
b State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, University of Chinese Academy of Sciences, Changchun 130022, P. R. China
c College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
d Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
Fig. S1 1H NMR spectrum of tBu-OXD-o-L-TPA in CDCl$_3$.

Fig. S2 13C NMR spectrum of tBu-OXD-o-L-TPA in CDCl$_3$.
Fig. S3 HRMS spectrum of \textit{t}Bu-OXD-\textit{o}-L-TPA.

Fig. S4 \textit{1}H NMR spectrum of \textit{t}Bu-OXD-\textit{m}-L-TPA in CDCl$_3$.
Fig. S5 13C NMR spectrum of tBu-OXD-m-L-TPA in CDCl$_3$.

Fig. S6 HRMS spectrum of tBu-OXD-m-L-TPA.
Fig. S7 ¹H NMR spectrum of \(\text{tBu-OXD-} p \text{-L-TPA} \) in CDCl₃.

Fig. S8 \(^{13}\text{C}\) NMR spectrum of \(\text{tBu-OXD-} p \text{-L-TPA} \) in CDCl₃.
Fig. S9 HRMS spectrum of \(\text{tBu-OXD-} o \text{-L-TPA} \).

Fig. S10 UV–Vis absorption spectra of \(\text{tBu-OXD-} o \text{-L-TPA} \), \(\text{tBu-OXD} \), and TPA in dilute \(\text{CH}_2\text{Cl}_2 \) solutions.
Fig. S11 (a) Current density-voltage-luminance ($J-V-L$) characteristics, (b) external quantum efficiency and power efficiency *versus* luminance characteristics, and (c) the normalized EL spectra for TADF blue, phosphorescent blue and green OLEDs based on tBu-OXD-m-L-TPA.