Electronic supplementary information (ESI)

Enhanced adsorption of CO$_2$ at steps of ultrathin ZnO: the importance of Zn-O geometry and coordination

Xingyi Deng1,2,*, Dan C. Sorescu1, Junseok Lee1,2

1National Energy Technology Laboratory (NETL), United States Department of Energy, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States, 2AECOM, P.O. Box 618, South Park, Pennsylvania 15129, United States

Corresponding Author E-mail: Xingyi.Deng@NETL.DOE.GOV
Fig. S1 O 1s XP spectra of as-prepared 1.7 MLE ZnO(L2-L3) and after heating to 700 K, showing the removal of hydroxyls.
Fig. S2 TPD spectrum of H$_2$O (m/z = 18) from as-prepared 1.7 MLE ZnO(L2-L3), showing the hydroxyl removal via recombinative desorption as water occurring at $T = 660$ K (heating rate 2 K/s).
Fig. S3 STM image of 2.3 MLE ZnO(L2-L3) (100 × 100 nm², V = 1.5 V, I = 50 pA).
Fig. S4 TPD spectrum of CO$_2$ (m/z = 44) from 2.3 MLE ZnO(L2-L3) following the CO$_2$ exposure of 0.1 L (1 L = 1.33 × 10$^{-6}$ mbar·s) at T = 100 K (heating rate 2 K/s).