Electronic supporting information

Reactivity of Diatomics and of Ethylene on Zeolite-Supported 13-Atom Platinum Nanoclusters

Melanie Keppeler,†,‡ Gabriele Bräuning,† Shankara Gayathri Radhakrishnan,† Xiong Liu,† Christopher Jensen† and Emil Roduner†‡ *

† Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

‡ Department of Chemistry, University of Pretoria, Pretoria 0002, Republic of South Africa

*Corresponding author: e.roduner@ipc.uni-stuttgart.de

1 Present address: Eichenweg 5c, D-89290 Buch, Germany
2 Present address: Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062, China
3 Present address: ThyssenKrupp Industrial Solutions AG, Business Unit Process Technologies, Neubeckumer Straße 127, D-59320 Ennigerloh, Germany

Figure S1: Numbering Scheme of ethane molecule. All isotopomers were calculated for staggered conformations (back rotor rotated by 60° with respect to front rotor). Eclipsed conformations exhibited negative frequencies for the lowest frequency (internal rotation) mode.
Table S1: Calculated intensities for various isotopologues in different conformations for the ethane product

<table>
<thead>
<tr>
<th>Isotopologue</th>
<th>Conformation</th>
<th>Vibrational frequency / cm(^{-1})</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)–CH(_3)</td>
<td>staggered</td>
<td>307.22</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>826.26</td>
<td>3.6934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>826.26</td>
<td>3.9634</td>
</tr>
<tr>
<td></td>
<td></td>
<td>994.71</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1220.84</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1220.85</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1412.54</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1422.11</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1502.94</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1502.94</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1505.73</td>
<td>9.1539</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1505.73</td>
<td>9.1539</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3025.71</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3026.16</td>
<td>59.5319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3071.27</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3071.27</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3096.26</td>
<td>62.8088</td>
</tr>
<tr>
<td>CH(_2)D–CH(_3) Atom 5 = D</td>
<td>staggered</td>
<td>288.30</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>718.67</td>
<td>2.2116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>810.58</td>
<td>3.9376</td>
</tr>
<tr>
<td></td>
<td></td>
<td>979.98</td>
<td>0.2446</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1138.52</td>
<td>0.7438</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1183.73</td>
<td>0.1900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1326.64</td>
<td>1.3827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1335.09</td>
<td>2.4385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1417.49</td>
<td>0.4589</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1481.43</td>
<td>3.0084</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1504.22</td>
<td>6.0828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1504.29</td>
<td>4.4416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2246.51</td>
<td>14.9967</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3025.93</td>
<td>29.3394</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3045.25</td>
<td>23.5320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3071.07</td>
<td>0.0011</td>
</tr>
<tr>
<td>Compound</td>
<td>Conformation</td>
<td>Wavenumber (cm⁻¹)</td>
<td>Frequency (GHz)</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CH₂D–CH₃D</td>
<td>D-D staggered</td>
<td>3085.36, 3096.12</td>
<td>38.9545, 62.5433</td>
</tr>
<tr>
<td>Atoms 5,7 = D</td>
<td></td>
<td>268.37, 637.45, 749.04, 972.74, 1062.60, 1137.59, 1301.71, 1309.68, 1338.71, 1350.42, 1478.97, 1484.59, 2243.39, 2249.58</td>
<td>0.0013, 1.9366, 3.0521, 0.3755, 1.0520, 0.7477, 1.3737, 0.3576, 3.4294, 2.5363, 2.2963, 6.4313, 16.3973, 13.6002, 38.9012, 10.3005, 22.9714, 51.4465</td>
</tr>
<tr>
<td>CH₂D–CH₂D</td>
<td>D-D anti</td>
<td>3085.36, 3096.12</td>
<td>38.9545, 62.5433</td>
</tr>
<tr>
<td>Atoms 5,7 = D</td>
<td></td>
<td>267.38, 662.01, 796.87, 909.90, 1071.14, 1153.04, 1302.20, 1310.88, 1339.11, 1351.06, 1478.41, 1485.14, 2242.73, 2250.19, 3042.00, 3051.58, 3070.88, 3095.98</td>
<td>0.0046, 1.8646, 4.1357, 0.0000, 0.0000, 0.0000, 3.4952, 5.0261, 0.0000, 0.0000, 9.0212, 0.0000, 30.7581, 0.0000, 60.6113, 0.0000, 62.2889</td>
</tr>
<tr>
<td>CHD₂–CH₃</td>
<td>staggered</td>
<td>275.43, 687.91</td>
<td>0.0007, 2.0985</td>
</tr>
<tr>
<td>Atoms 4,5 = D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$D−CHD$_2$</td>
<td>H-D staggered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Atoms 5,6,8 = D</td>
<td>253.87</td>
<td>0.0026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>637.52</td>
<td>1.7756</td>
<td></td>
</tr>
<tr>
<td></td>
<td>725.65</td>
<td>3.0357</td>
<td></td>
</tr>
<tr>
<td></td>
<td>903.51</td>
<td>0.1650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1032.51</td>
<td>0.7958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1094.97</td>
<td>0.6166</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1122.14</td>
<td>1.2213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1296.96</td>
<td>1.7922</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1321.15</td>
<td>3.1804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1331.50</td>
<td>3.1626</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1350.76</td>
<td>1.4002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1481.68</td>
<td>4.6317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2209.69</td>
<td>14.8563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2245.77</td>
<td>12.8782</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2285.40</td>
<td>17.9560</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3046.17</td>
<td>22.3305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3062.37</td>
<td>22.1663</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3087.36</td>
<td>47.9358</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH$_2$D−CHD$_2$</th>
<th>H-D anti</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atoms 5,6,8 = D</td>
<td>254.55</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>660.77</td>
<td>2.0580</td>
<td></td>
</tr>
<tr>
<td></td>
<td>678.75</td>
<td>2.2427</td>
<td></td>
</tr>
<tr>
<td></td>
<td>947.96</td>
<td>0.6605</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1028.78</td>
<td>0.3809</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1099.15</td>
<td>1.2643</td>
<td></td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>266.29</td>
<td>0.0000</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>681.86</td>
<td>2.2972</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>681.86</td>
<td>2.2980</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>907.31</td>
<td>0.0346</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1082.87</td>
<td>2.8191</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1082.87</td>
<td>2.8204</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1132.95</td>
<td>0.4701</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1132.95</td>
<td>0.4702</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1135.16</td>
<td>0.4019</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1417.41</td>
<td>0.4455</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1503.08</td>
<td>4.6843</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>1503.09</td>
<td>4.6867</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>2174.08</td>
<td>14.9609</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>2284.72</td>
<td>14.8528</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>2284.72</td>
<td>14.8495</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>3025.93</td>
<td>29.7367</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>3083.91</td>
<td>32.0404</td>
</tr>
<tr>
<td>CH$_3$–CD$_3$</td>
<td>staggered</td>
<td>3083.91</td>
<td>32.0348</td>
</tr>
</tbody>
</table>

<p>| CD$_3$–CD$_3$ | staggered | 217.32 | 0.0000 |
| CD$_3$–CD$_3$ | staggered | 597.15 | 1.8775 |
| CD$_3$–CD$_3$ | staggered | 597.15 | 1.8781 |
| CD$_3$–CD$_3$ | staggered | 845.32 | 0.0000 |
| CD$_3$–CD$_3$ | staggered | 979.97 | 0.0000 |
| CD$_3$–CD$_3$ | staggered | 979.97 | 0.0000 |
| CD$_3$–CD$_3$ | staggered | 1074.77 | 0.0000 |
| CD$_3$–CD$_3$ | staggered | 1074.77 | 0.0000 |
| CD$_3$–CD$_3$ | staggered | 1079.52 | 0.7536 |
| CD$_3$–CD$_3$ | staggered | 1091.55 | 5.7504 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1091.56</td>
<td>5.7531</td>
</tr>
<tr>
<td>1163.92</td>
<td>0.0000</td>
</tr>
<tr>
<td>2171.32</td>
<td>29.9004</td>
</tr>
<tr>
<td>2176.80</td>
<td>0.0000</td>
</tr>
<tr>
<td>2276.90</td>
<td>0.0000</td>
</tr>
<tr>
<td>2276.90</td>
<td>0.0000</td>
</tr>
<tr>
<td>2292.41</td>
<td>31.0437</td>
</tr>
<tr>
<td>2292.41</td>
<td>31.0370</td>
</tr>
</tbody>
</table>