Electronic Supporting Information

Supported Bimetallic Nano-alloys as Highly Active Catalysts for the One-Pot Tandem Synthesis of Imines and Secondary Amines from Nitrobenzene and Alcohols

Meenakshisundaram Sankara,b,*, Qian Hec, Simon Dawsonb, Ewa Nowickab, Li Luc, Pieter C. A. Bruijninckxa, Andrew M. Bealea,d,e, Christopher J. Kielyc, and Bert M. Weckhuysena,*

a Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK.

c Department of Material Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.

d UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK.

e Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.

Corresponding authors: Dr. Meenakshisundaram Sankar, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK. Ph: +44(0)-29-2087 5748, Email: Sankar@cardiff.ac.uk

and

Prof dr. ir. Bert M. Weckhuysen, Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands. Email: B.M.Weckhuysen@uu.nl
Figure S1. Time-on-line profile of the total TON and individual product TONs for the tandem synthesis of \(N\)-benzylideneaniline (5) and \(N\)-benzylaniline (6) using the 1\%Ru-Pd/TiO\(2\) (M\textsubscript{Im}) catalyst. Reaction conditions: catalyst: 0.1 g; nitrobenzene: 4.5 mmol; benzyl alcohol: 45 mmol; mesitylene (solvent): 5 mL; catalyst: 100 mg; Ar: 20 bar; T: 433 K. The TONs are calculated using the nominal molar metal loading, the moles of substrate (3) consumed and the moles of product (6) formed.
Figure S2. Representative high angle annular dark field (HAADF) images of the (a) 1%Au-Pd/TiO₂ and (b) 1%Ru-Pd/TiO₂ M₉₅ samples showing the existence of sub-nm metal clusters (white circles).
Figure S3. Isolated Au L\textsubscript{3}-edge and Pd K-edge EXAFS and associated Fourier Transform data for the two-shell fits for 1% Au-Pd/TiO\textsubscript{2} (S\textsubscript{1m}). Key: Solid line: experimental data, dotted line: theoretical fit; top two spectra were recorded at Au L\textsubscript{3} edge and bottom two spectra were recorded at Pd K-edge. EXAFS spectra were fitted in k-space.