Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information for:

Non-Directed Aromatic C-H Amination: Catalytic and Mechanistic Studies enabled by Pd Catalyst and Reagent Design

H. M. Dhammika Bandara,[§] Dong Jin,[§] Mark A. Mantell, Kathleen D. Field,⁺ Anqi Wang, Remya

P. Narayanan, N. Aaron Deskins,** and Marion H. Emmert*

Worcester Polytechnic Institute, Department of Chemistry & Biochemistry, 100 Institute Road,

Worcester, MA 01609

*mhemmert@wpi.edu

⁺DFT calculations; *nadeskins@wpi.edu

[§]These authors contributed to the manuscript in equal parts.

Table of Contents

General Procedures	3
Initial Optimization of C-H Amination with Acridine (1) as Ligand	5
DFT Calculations	. 7
Preparation of Ligand 7	9
Preparation of Ligand 9	13
Preparation of CF ₃ CONHOAc	16
Preparation of [(4-methylphenyl)sulfonylamino] acetate (TsNH-OAc)	20
Preparation of EtCONH-OAc	23
Preparation of ⁱ PrCONH-OAc	27
H/D Exchange Reactions Between C_6H_6 and $[D_4]AcOH$	31
Optimization of C-H Amination	34
Study of Additive Effects	38
Product Inhibition Study	39
Competition Kinetic Isotope Effect Study	40
C-H Amination of Benzene in Presence of AcOH-D4	42
Preparation of (^t Bu ₂ bipy)Pd(tol)(OAc) (11)	48
Reactions between (^t Bu ₂ bipy)Pd(tol)(OAc) (11) and AcO-NHAc	51
Amination Reagent Scope	54
Arene Substrate Scope	57

General Procedures

¹H and ¹³C NMR spectra were recorded on Varian Inova 400 MHz NMR spectrometer with the residual solvent peak (CDCl₃: ¹H = 7.27 ppm, ¹³C = 77.23 ppm) as the internal reference unless otherwise noted. Chemical shifts are reported in parts per million (ppm) (δ). Multiplicities are reported as follows: br (broad resonance), s (singlet), t (triplet), q (quartet), d (doublet), m (multiplet), app (apparent). Coupling constants (J) are reported in Hz. Infrared (IR) spectroscopy was performed on a Perkin Elmer FTIR. Peaks are reported in cm⁻¹ with the following relative intensities: s (strong, 67-100 %), m (medium, 40-67 %), w (weak, 20-40 %), and br (broad). High resolution mass spectroscopy was performed at the University of Notre Dame mass spectroscopy facility using a Q-Tof-2 mass spectrometer operating in positive ion mode.

Stock solutions were prepared using volumetric glassware and all liquid reagents were dispensed by difference using gas-tight Hamilton syringes. Ligands 1,2,3,4,5,6,7,8-octahydroacridine (**8**),¹ 1,2,3,5,6,7-hexahydrodicyclopenta[b,e]pyridine (**6**),² and 1,1,3,3,6,6,8,8-octamethyl-1,2,3,4,5,6,7,8-octahydroacridine (**9**)³ were prepared according to literature procedures. Electrophilic amination reagents were

¹ Pilato, M. L.; Catalano, V. J.; Bell, T. W. Synthesis of 1,2,3,4,5,6,7,8-octahydroacridine via condensation of cyclohexanone with formaldehyde. *J. Org. Chem.* **2001**, *66* (4), 1425–1527.

² Thummel, R. P.; Kohli, D. K. Preparation and properties of annelated pyridines. *J. Org. Chem.* **1977**, *42* (16), 2742–2747.

³Newkome, G. R.; Fishel, D. L.; Pyrolysis of Ketone N,N,N-trimethylhydrazonium fluoroborates. III. Preparation of fused-ring pyridine. *J. Het. Chem.* **1967**, *4* (3), 427–430.

either synthesized according to literature procedures ^{4,5,6,7} or independently by new procedures described below.

AcOH[D₄] for H/D exchange experiments was purchased from Cambridge Isotopes Lab. H/D exchange data for benzene was measured on an Agilent GC-MS Q5000 using a xTi®-5 (serial # 790776) column obtained from Agilent. All raw data were deconvoluted using Periana's benzene H/D exchange worksheet with a reported error of 5%.^[8] An assumption in the worksheet is that the fragmentation pattern of each isotopolog is identical. To obtain the most accurate analysis, pure samples of each isotopolog must be analyzed to determine the exact coefficients of the polynomial expansion for the given instrument. This treatment confirmed that the calculated percents of each isotopolog were within the reported error of the worksheet. All solvents ued were dried over activated molecular sieves prior to use.

⁴ Cai, Xiong, et al. Multi-functional small molecules as anti-proliferative agents., U.S. Patent Application 11/852,458.

⁵ Jones, L. W., Neuffer, L. "Hydroxamic acids related α-hydroxy acids and to acrylic acid, and a study of their rearrangements, *J. Am. Chem. Soc.*, **1917**, *39* (4), 659–668

⁶ Guimond, N., Gorelsky, S. I., Fagnou, K. Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies, *J. Am. Chem. Soc.*, **2011**, *133* (16), 6449–6457

⁷ Middleton, W. J., Trifluoroacetonitrile oxide. J. Org. Chem., **1984**, 49 (5), 919–922

^[8] Young, K. H. J.; Meier, S. K.; Gonzales, J. M.; Oxgaard, J.; Goddard III, W. A; Periana, R. A. *Organometallics* **2006**, *25*, 4734-4737.

Initial Optimization of C-H Amination with Acridine (1) as Ligand

To a scintillation vial (5 mL) was added benzene (0.50 mL, 5.6 mmol, 40 equiv), palladium acetate (3.1 mg, 14 μ mol, 10 mol %), **1** (2.5 mg, 14 μ mol, 10 mol %) and the corresponding amination reagents (140 μ mol, 1.0 equiv). The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 24 hr. The reaction was allowed to cool to room temperature.

<u>Product Analysis by NMR (for synthesis of PhNHAc)</u>: 0.50 mL (corresponding to 5.0 mg; 29 μ mol of 1,3-dinitrobenzene) of a standard solution containing NMR solvent and 1,3-dinitrobenzene as NMR standard (50 mg; 290 μ mol in 5.0 mL of CDCl₃) were added to the mixture. The resulting solution was filtered through celite. The amount of product formed was determined by integration of the NMR signals at 8.97 ppm (1H, 1,3-dinitrobenzene) and 2.21 ppm (3H, PhNHC(O)<u>CH₃</u>) (relaxation time = 15.0 s, NS = 16).

<u>Product Analysis by GC (for synthesis of PhNHC(O)CF₃):</u> 10 μ L of PhCI (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL saturated, aqueous K₂CO₃ solution. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. The amount of product formed was determined by calibrated GC analysis.

Table 1. Calibrated GC Yields of C-H Amination Optimization with Acridine as

Ligand. Conditions: benzene (0.50 mL, 5.6 mmol, 40 equiv), Pd(OAc)₂ (3.1 mg, 14 μ mol, 10 mol %), acridine (2.5 mg, 14 μ mol, 10 mol %), amination reagent (140 μ mol, 1.0 equiv), 100 °C, 24 hr.

	1 equiv R' O-NH R	additive		
Ph-H —			Ph-NHR	N N
		;) ₂ /1 1:1		1
Additive		R'0	R	Yield PhNHR
none		AcO	Ac	11 ± 2%
none		AcO	C(O)CF	3 21 ± 2%
none		AcO	Ts	13 ± 1%
none		TsO	Ts	10 ± 1%
none		F ₃ CCO ₂	C(O)CF	$_{3}$ 22 ± 2%
0.6 eq AcOH		AcO	Ac	27 ± 2%
1.0 eq AcOH		AcO	Ac	29 ± 2%
1.3 eq AcOH		AcO	Ac	25 ± 2%
2.5 mol % AgOA	С	AcO	Ac	19 ± 2%
5 mol % AgOAc		AcO	Ac	27 ± 1%
10 mol % AgOAd	;	AcO	Ac	20 ± 2%
2.5 mol % C ₆ F ₅ N		AcO	Ac	37 ± 2%
5 mol % C6F₅N		AcO	Ac	41 ± 1%
10 mol % C ₆ F ₅ N		AcO	Ac	30 ± 2%
0.6 eq AcOH		F ₃ CCO ₂	C(O)CF	$_{3}$ 23 ± 1%
1.0 eq AcOH		F ₃ CCO ₂	C(O)CF	₃ 17 ± 1%
1.3 eq AcOH		F ₃ CCO ₂	C(O)CF	$_{3}$ 16 ± 1%
2.5 mol % AgOA	С	F ₃ CCO ₂	C(O)CF	$_{3}$ 24 ± 2%
5 mol % AgOAc		F ₃ CCO ₂	C(O)CF	$_{3}$ 22 ± 1%
10 mol % AgOAd	>	F ₃ CCO ₂	C(O)CF	3 17 ± 1%
2.5 mol % C ₆ F₅N		F ₃ CCO ₂	C(O)CF	3 22 ± 1%
5 mol % C ₆ F₅N		F ₃ CCO ₂	C(O)CF	$_{3}$ 28 ± 2%
10 mol % C ₆ F ₅ N		F ₃ CCO ₂	C(O)CF	₃ 17 ± 1%
No Pd catalyst		AcO	Ac	0%
Pd(OPiv) ₂ instead	d of Pd(OAc) ₂	AcO	Ac	8 ± 1%
Pd(O ₂ CCF ₃) ₂ inst	tead of Pd(OAc) ₂	AcO	Ac	7 ± 2%
PPh ₃ instead of <i>I</i>	A	AcO	Ac	5 ± 2%
Pyridine (5) inste	ad of A	AcO	Ac	7 ± 2%
P(o-tol) ₃ instead	of A	AcO	Ac	6 ± 1%

DFT Calculations

All calculations used DFT methodologies implemented in the Gaussian 09 program.^[9] All the data presented here results from calculations which employed the B3LYP set of functionals.^[10] For Pd, we applied the LANL2Dz basis set,^[11] all other atoms(O,N,C and H) were assigned 6-311+G(2d,p) basis sets.¹² All geometries and potential energies were calculated by standard optimization procedures in acetic acid (AcOH as a solvent and T= 298 K, 25 °C or 373 K, 100 °C. Enthalpies (Δ H) and Gibbs' free energies (Δ G; T = 298.15 or 373 K, P = 1 atm) were subsequently obtained from the potential energies (Δ E) using standard thermodynamic corrections.¹³

^[9] Frisch, M. J.; et al., Gaussian 09, revision C.01; Gaussian, Inc.:Wallingford, CT, 2009.

^[10] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

^[11] Roy, L. E., Hay, P. J. & Martin, R. L. J. Chem. Theory Comput. 2008, 4, 1029-1031.

^[12] Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.

^[13] McQuarrie, D. A. Statistical Thermodynamics; Harper and Row: New York, 1973.

Table 2. Energies and Enthalpies of Dimer Formation. All energy and enthalpy values are tabulated in kcal/mol; entropy values are tabulated in cal/(mol K). Thermodynamically favorable dimers (anti vs. syn) are bolded for each temperature.

			d-O	0 ⁻ ^`0 Pd Pd 0 0 ⁻ -0 0				0, 0 0 0, 0, Pd F L′ 0 0 0	^o d L
Ligand L	Т (К)	∆E anti	∆G anti	∆H anti	∆S anti	∆E _{syn}	∆G _{syn}	∆H _{syn}	∆S _{syn}
	373	-1.1	20.3	0.9	-52.1	-8.7	+12.2	-6.6	-50.3
1	298	-1.1	16.4	0.6	-52.9	-8.7	+8.4	-6.8	-51.1
	373	-1.6	18.8	0.1	-50.2	-13.2	+8.1	-11.4	-52.2
4	298	-1.6	15.0	-0.2	-50.9	-13.2	+4.2	-11.6	-53.0
	373	-19.5	+0.7	-17.5	-48.8	-17.2	4.4	-16.1	-54.9
5	298	-19.5	-3.0	-17.8	-49.6	-17.2	0.3	-16.1	-55.2

Preparation of Ligand 7

The synthesis of **7** was executed in analogy to the previously described synthesis of **6**.¹⁴

<u>Preparation of 2-(aminomethylene)-4,4-dimethylcyclopentan-1-one:</u> A steady stream of ammonia gas was passed through a solution of 2-(hydroxymethylene)-4,4dimethylcyclopentan-1-one (300 mg, 2.14 mmol, 1.00 eq.) in chloroform (3 mL) at 23 °C for 30 min. The solution was allowed to stand at 23 °C for 18 h, dried over MgSO₄ and filtered. After evaporation of the solvent, 2-(aminomethylene)-4,4-dimethylcyclopentan-1-one (280 mg, 2.00 mmol, 94%) was obtained as yellow solid. The crude product was used in the next step without further purification.

<u>Preparation of ligand 7</u>: A mixture of 2-(aminomethylene)-4,4dimethylcyclopentan-1-one (280 mg, 2 mmol, 1.00 eq.), 3,3-dimethylcyclopentan-1-one (224 mg, 2 mmol, 1.00 eq.), ammonium acetate (245 mg, 5 mmol, 5.00 eq.), and acetic

^[14] Thummel, R. P.; Kohli, D. K. Preparation and properties of annelated pyridines. *J. Org. Chem.* **1977**, *42* (16), 2742–2747.

acid (0.23 ml, 4.02 mmol, 2.00 eq.) was heated at 120 °C for 72 h. After allowing the mixture to cool to room temperature, the residue was extracted with diethyl ether (5 x 10 mL). The organic layers were combined, the solvent was removed in vacuum, and the resulting residue was purified by column chromatography (silica, 1:9 hexanes:ethyl acetate) to obtain ligand **7** as a yellow solid (99 mg, 23%).

¹H NMR (400 Mz, CDCl₃, 25 °C): δ = 7.20 (s, 1H; ArH), 2.78 (s, 4H; CH₂), 2.65 (s, 4H; CH₂), 1.16 ppm (s, 12H; CH₃);

¹³C (NMR 100 Mz, CDCl₃, 25 °C): *δ* = 162.6, 134.1, 129.5, 49.1, 45.8, 38.7, 29.3 ppm;

IR (KBr): $\tilde{\nu}$ = 2990 (s), 2841 (s), 2801 (m), 1701 (w), 1573 (m), 1516 (m), 1477 (s), 1450 (s), 1390 (m), 1287 (m), 1231 (m), 1201 (w), 1145 (m), 1099 (m), 971 (s), 883 (s), 790 (s), 770 (s), 733 (m) cm⁻¹;

HRMS calc. 216.1752; found 216.1750 (M+H).

Figure 1. ¹H NMR spectrum of 7 in CDCI₃.

Figure 2. ¹³C NMR spectrum of 7 in CDCI₃.

Preparation of Ligand 9

9 was obtained using a modified literature procedure.¹⁵

N,*N*,*N*-trimethyl-*N*'-3,3,5,5-tetramethylcyclohenehydrazone tetrafluoroborate (100 mg, 0.290 mmol, 1.00 eq) was placed in a placed in a 5 mL pressure tube and heated under nitrogen at 215 °C for 18 h. After allowing to cool to room temperature, the residue was extracted with benzene (5 × 10 mL). The organic layers were combined, the solvent was removed in vacuum and the resulting residue was purified by column chromatography (silica, 1:10 hexanes:ethyl acetate) to obtain ligand **9** as a brown oil (23 mg, 23%) which solidified upon storing at 8 °C.

¹H NMR (400 Mz, CDCl₃, 25 °C): δ = 7.53 (s, 1H; ArH), 2.17 (s, 4H; CH₂), 1.59 (s, 4H; CH₂), 1.31 ppm (s, 12H; CH₃) 1.03 ppm (s, 12H; CH₃);

¹³C (NMR 100 Mz, CDCl₃, 25 °C): δ = 162.9, 136.7, 118.9, 41.9, 36.1, 31.5, 20.0,
14.2, 13.9 ppm;

¹⁵ Newkome, G. R.; Fishel, D. L.; Pyrolysis of Ketone N,N,N-trimethylhydrazonium fluoroborates. III. Preparation of fused-ring pyridine. *J. Het. Chem.* **1967**, *4* (3), 427–430.

IR (KBr): $\tilde{\nu} = 3001$ (s), 2941 (s), 2900 (s), 2833 (m), 1710 (w), 1577 (m), 1517 (m), 1457 (s), 1405 (s), 1389 (s), 1299 (s), 1220 (m), 1190 (w), 1109 (m), 1050 (m), 970 (s), 878 (s), 797 (s), 777 (s), 747 (m) cm⁻¹;

HRMS calc. 302.3317; found 302.3315 (M+H).

Figure 3. ¹H NMR of ligand 9 in CDCl₃.

Figure 4. ¹³C NMR of ligand 9 in CDCI₃.

Preparation of CF₃CONHOAc

$$F_{3}C \xrightarrow{O}_{H} OH \xrightarrow{Et_{3}N, AcCl} F_{3}C \xrightarrow{O}_{H} F_{3}C \xrightarrow{O}_{H} O \xrightarrow{O}_{H} O$$

To a stirred solution of 9.7 g (75 mmol, 1.0 equiv) of Trifluoroacetohydroxamic acid (CF₃CONHOH) (prepared according to ¹⁶) in 135 mL of THF, 12.4 mL (90 mmol, 1.2 equiv) of triethylamine was added at 0 °C, followed by a dropwise addition of 6.4 mL (90 mmol, 1.2 equiv) of acetyl chloride at 0 °C. The mixture was allowed to stir at room temperature for 2 hours; formation of a white precipitate was observed during the reaction. After the reaction time, the precipitate was removed by filtration. The filtrate was collected and the solvent was removed under vacuum. The residue was then dissolved in 50 mL EtOAc, washed with 1 M HCl (2 x 30 mL), brine (2 x 30 mL) and dried over MgSO₄. Removal of solvent under vacuum afforded the off-white, crude product, which was purified by recrystallization from hot toluene. Crystallization overnight at room temperature afforded 9.6 g (75%) of the title compound.

¹H NMR (400 MHz, CDCl₃, 25 °C): *δ* = 10.47 (br, 1H; NH), 2.22 ppm (s, 3H; CH₃);

¹³C (NMR 100 MHz, CDCl₃, 25 °C): δ = 167.5, 154.3 (quartet, *J* =39 Hz), 115.4 (quartet, *J* =288 Hz), 17.7 ppm;

¹⁶ Middleton, W. J. *J. Org. Chem.*, 1, 3, 4-Dioxazol-2-ones: a potentially hazardous class of compounds, **1983**, *48* (21), 3845–3847

¹⁹F (NMR 188.2 MHz,; CDCl₃) δ = -73.8 ppm;

IR (ATR): \tilde{V} =3157 (s), 3001 (s), 2858 (s), 1811 (s), 1717 (s), 1541 (s), 1371 (s), 1344 (s), 1221 (s), 1192 (s), 1151 (s), 1036 (s), 912 (s), 823 (s), 773 (s), 740 (s), 667 (s), 626 (s) cm⁻¹;

HRMS calc. 170.007051.; found 170.007605 (M-H).

Figure 5. ¹H NMR spectrum of CF₃CONHOAc in CDCl₃.

Figure 6. ¹³C NMR spectrum of CF₃CONHOAc in CDCl₃.

Figure 7. ¹⁹F NMR spectrum of CF₃CONHOAc in CDCl₃.

Preparation of [(4-methylphenyl)sulfonylamino] acetate (TsNH-OAc)

p-Toluenesulfonylhydroxylamine (TsNHOH) was synthesized in analogy to a reported procedure.¹⁷

8.0 g (42 mmol, 1.0 equiv) of TsNHOH was dissolved in 280 mL THF at -78° C. Then, 4.4 g (42 mmol, 1.0 equiv) triethylamine was added; acetyl chloride (3.1 mL, 3.3 g, 42 mmol, 1.0 equiv) was then added dropwise to the mixture at the same temperature. Formation of a white precipitate was observed during the addition. The reaction mixture was stirred at -78° C for 6 h; then, the precipitation was removed by filtration. Solvent was removed in vacuum and 150 mL dichloromethane was added. The organic phase was washed with 100 mL 1M HCl, 100 mL H₂O, 100 mL brine and dried over MgSO₄. Removal of solvent in vacuum resulted in a slightly yellow, crude product. Recrystallization from EtOAc/hexanes (1:2; 15 mL) in the heat and crystallization at room temperature overnight afforded the title compound (6.0 g; 76%) as a white solid.

¹⁷ Toscano, John P., Art Sutton, Vincent J. Kalish, Frederick Arthur Brookfield, Stephen Martin Courtney, and Lisa Marie Frost. "N-Acyloxysulfonamide and N-Hydroxy-N-Acylsulfonamide Derivatives." U.S. Patent Application 12/962,572, filed December 7, 2010.

¹H NMR (400 MHz, CDCl₃, 25 °C): *δ* = 8.91 (br, 1H; NH), 7.81 ppm (d, 2H; Ar-H), 7.35 ppm (d, 2H; Ar-H), 2.22 ppm (s, 3H; CH₃);

¹³C (NMR 100 MHz, CDCl₃, 25 °C): δ = 169.1, 146.0, 132.4, 130.1, 128.9, 21.8, 18.3 ppm;

IR (ATR): $\tilde{\nu}$ = 3127 (s), 2795 (s), 2761 (s), 1784 (s), 1764 (s), 1594 (s), 1493 (s), 1425 (s), 1348 (s), 1305 (d), 1192 (s), 1161 (s), 1120 (s), 1089 (s), 1016 (m), 864 (d), 819 (s), 800 (s), 729 (s), 663 (s), 631 (s), cm⁻¹;

HRMS calc. 230.048155, found 230.049639 (M+H).

Figure 8. ¹H NMR spectrum of [(4-methylphenyl)sulfonylamino] acetate in CDCl₃.

Figure 9. ¹³C NMR spectrum of [(4-methylphenyl)sulfonylamino] acetate in CDCl₃.

Preparation of EtCONH-OAc

EtCONH-OAc was obtained using a modified literature procedure.^{18,19}

2.02 g Hydroxylamine hydrochloride (27.6 mmol, 1.0 equiv) and 1.92 g propionamide (27.6 mmol, 1.0 equiv) were mixed in a 250 ml pressure flask, to which 25 ml toluene were added. After tightly sealing the flask, the mixture was heated for 5 h at 100 °C. The reaction mixture was allowed to cool to room temperature and 130 mL hexane were added. The resulting cloudy suspension was sonicated for 5 min. The supernatant liquid was decanted and the remaining solid in the flask was extracted with a 1:1 mixture of EtOAc and acetone (6 × 30 mL) in the heat. All filtrates were combined and the solvent was removed in vacuum. The obtained off-white precipitate was recrystallized from ethyl acetate/hexanes (5:1) in the heat. After letting allow to slowly cool to room temperature,

¹⁸ Allen, C.L.; Atkinson, B.N.; Williams, J.M.J.; Transamidation of Primary Amides with Amines Using Hydroxylamine Hydrochloride as an Inorganic Catalyst, *Angew. Chem. Int. Ed.*, **2012**, *51*(6), 1383-1386

¹⁹Zhang, Z.; Yu, Y.; Liebeskind, L.S. *N*-Amidation by Copper-Mediated Cross-Coupling of Organostannanes or Boronic Acids with *O*-Acetyl Hydroxamic Acids. *Org Lett.*, **2008**, *10*(14), 3005-3008

crystallization was completed at 8° C. The obtained crystals were isolated by filtration to afford 1.82 g of EtCONHOH (78%).

600 mg of N-hydroxy propionamide (EtCONHOH; 6.73 mmol, 1.0 equiv) was suspended in CH₂Cl₂ (18mL). 3.7 mL of a 2 M NaOH solution in H₂O (7.41 mmol, 1.1 equiv) and 0.7 ml Ac₂O (7.41mmol, 1.1 equiv) were added. The mixture was stirred at room temperature for 2 h. The phases were separated and the aqueous phase was repeatedly extracted with CH₂Cl₂, as the title compound shows some solubility in H₂O. The combined organic phases were dried over MgSO₄ and the solvent was removed in vacuum. 5ml hexanes were added to the crude product and all solvent was removed again in vacuum. The resulting crystalline product was dissolved in 10 ml EtOAc in the heat. 150 ml hexane were added and the solution was heated to boiling. Slowly allowing to cool to room temperature was followed by completing the crystallization at -20 °C for 18 h. The obtained white crystals of EtCONH-OAc were isolated by filtration and dried in air (3.48 g; 79%).

¹H NMR (400 MHz, CDCl₃, 25 °C): *δ* = 9.153 (br, 1H; NH), 2.26 ppm (m, 2H; C<u>*H*</u>₂), 2.22 ppm (s, 3H; C<u>*H*</u>₃), 1.2 ppm (t, 3H; C<u>*H*</u>₃);

¹³C (NMR 100 MHz, CDCl₃, 25 °C): *δ* = 172.37, 168.7, 25.95, 18.18, 9.24 ppm;

IR (ATR): \tilde{V} = 3148 (s), 2944 (d), 2889 (s), 1789 (s), 1687 (s), 1529 (s), 1459 (d), 1371 (s), 1238 (s), 1165 (s), 1089 (s), 1078 (s), 1035 (d), 935 (s), 844 (s), 805 (s), 709 (w), 662 (s), cm⁻¹;

HRMS calc. 154.0475, found 154.0461 (C₅H₉NO₃+Na).

Figure 10. ¹H NMR spectrum of EtCONH-OAc in CDCI₃.

Figure 11. ¹³C NMR spectrum of EtCONH-OAc in CDCl₃.

Preparation of ^{*i*}PrCONH-OAc

¹PrNH-OAc was synthesized using a modified literature procedure.^{20,21}

Hydroxylamine hydrochloride (2.407 g; 27.6 mmol; 1.00 equiv.) and isobutyramide (1.92 g; 27.6 mmol; 1.00 equiv.) were mixed in a 250 ml pressure flask and 25 ml toluene were added. The flask was sealed and the mixture was heated for 5 hours to 100 °C. The reaction mixture was allowed to cool to room temperature and 130 mL hexanes were added. The obtained cloudy suspension was sonicated for 5 min. The obtained suspension was filtered through a glass filter frit and the filter cake was repeatedly suspended in a 1:1 mixture of EtOAc and acetone (6 × 30 mL) in the heat. All filtrates were combined and the solvent was removed in vacuum. The off-white precipitate obtained was recrystallized from ethyl acetate/hexanes (5:1) in the heat.

²⁰ Allen, C.L.; Atkinson, B.N.; Williams, J.M.J.; Transamidation of Primary Amides with Amines Using Hydroxylamine Hydrochloride as an Inorganic Catalyst, *Angew. Chem. Int. Ed.*, **2012**, *51*(6), 1383-1386

²¹ Zhang, Z.; Yu, Y.; Liebeskind, L.S. *N*-Amidation by Copper-Mediated Cross-Coupling of Organostannanes or Boronic Acids with *O*-Acetyl Hydroxamic Acids. *Org Lett.*, **2008**, *10*(14), 3005-3008

After crystallization at room temperature, the obtained crystals were isolated by filtration to afford 2.4 g (78%) of ^IPrCONHOH.

496 mg N-hydroxy isobutyramide (4.81 mmol, 1.0 equiv) was suspended in CH_2CI_2 (15 mL). 2.65 mL of 2 M NaOH in H_2O (5.29 mmol, 212 mg, 1.1 equiv.) and 0.5 mL of Ac₂O (5.29 mmol, 540 mg, 1.1 equiv.) were added. After stirring the mixture at room temperature for 2 h, the organic layer was separated. The aqueous phase was extracted with CH_2CI_2 . The combined organic phases were dried over MgSO₄, filtered, and the solvent of the filtrate was removed in vacuum. 5ml hexanes were added to the crude product and the solvent was evaporated in vacuum. The resulting crystalline product was dissolved in 10 ml EtOAc in the heat. 150 ml hexanes were added and the solution was heated to boiling. Crystallization was completed at -20 °C and the resulting white crystals were isolated by filtration, affording 0.55 g (79%) of ^{*i*}PrCONH-OAc.

¹H NMR (400 MHz, CDCl₃, 25 °C): δ = 8.99 (br, 1H; NH), 2.48 ppm (m, 1H; C<u>H</u>), 2.22 ppm (s, 3H; C<u>H</u>₃), 1.21 ppm (d, 6H; C<u>H</u>₃);

¹³C (NMR 100 MHz, CDCl₃, 25 °C): *δ* = 169.2, 32.8, 19.3, 18.5 ppm;

IR (ATR): \tilde{V} = 3134 (s), 2798 (d), 2883 (s), 1795 (s), 1662 (s), 1527 (s), 1472 (d), 1369 (s), 1235 (s), 1168 (s), 1098 (s), 1027 (s), 955 (s), 875 (s), 843 (s), 687 (w), 634 (s), cm⁻¹;

HRMS calc. 146.0817, found 146.0812 (M+H).

Figure 12. ¹H NMR spectrum of ^{*i*}PrCONH-OAc in CDCl₃.

Figure 13. ¹³C NMR spectrum of ^{*i*}PrCONH-OAc in CDCl₃.

H/D Exchange Reactions Between C₆H₆ and [D₄]AcOH

Figure 14. Ligands used in H/D exchange reactions.

H/D exchange reactions were performed according to a literature procedure.²²

To a 4 mL resealable schlenk tube was added Pd(OAc)₂ (1.1 mg, 5.0 μ mol, 2.0 mol %), ligand (5.0 μ mol, 2.0 mol %) and 0.10 mL (10 μ mol, 4.0 mol %) of a stock solution of AgBF₄ (19.5 mg, 100 μ mol) in 1.0 mL [D₄]AcOH, which had been prepared immediately prior to use. An additional 0.27 mL of [D₄]AcOH was added, and the mixture was stirred for 1 min. Benzene (22.3 μ L, 19.5 mg, 0.250 mmol, 1.00 equiv), stored over 4 Å molecular sieves, was added to the reaction vessel, which was subsequently sealed. The vessel was completely submerged in a preheated oil bath. At the end of the reaction, the vessel was cooled to room temperature. The reaction mixture was then filtered over a plug of Celite to remove any particulates and rinsed with EtOAc (1 x 2 mL) into a 20 mL scintillation vial. A saturated aqueous solution of

^[22] H/D exchange was conducted using a standard procedure developed previously: A. J. Hickman, J. M. Villalobos, M. S. Sanford, *Organometallics* **2009**, *28*, 5316-5322.

 K_2CO_3 (9 M in deionized H₂O, 2 x 1 mL) was added to the vial to quench and separate the acid. The organic layer was carefully separated and diluted with additional EtOAc to give a 12.8 mM solution of benzene (~1 mg/mL) for analysis by GC-MS.

The % deuterium incorporation was defined as the percent of C–H bonds converted to C–D bonds. Background reactions (in the absence of any metal catalyst) at 150 °C and 100 °C are minimal with $[D_4]AcOH$ (<0.5 TON) and are documented in the literature.^[22,23]

Turnover numbers (TONs) are calculated as mol deuterium incorporated per mol of catalyst. The reported error is the standard deviation of at least two replicate trials.

^[23] M. H. Emmert, J. B. Gary, J. M. Villalobos, M. S. Sanford, *Angew. Chem. Int. Ed.* **2010**, *49*, 5884-5886.

Table 3. Turnover numbers for H/D exchange between benzene and $[D_4]AcOH$ at 100 °C catalyzed by Pd(OAc)₂/ligand combinations (1:1) after 2 and 24 h.

Conditions: Pd(OAc)₂ (1.1 mg, 5.0 μ mol, 2.0 mol %), ligand (5.0 μ mol, 2.0 mol %), benzene (22.3 μ l, 0.25 mmol, 1.00 equiv), [D₄]AcOH (0.37 ml, 6.5 mmol, 25 equiv), 100 °C.

Ligand	TON 2 h	TON 24 h
	5 ± 1	33 ± 3
N 4	9 ± 1	32 ± 1
	11 ± 1	21 ± 1
	3.7 ± 0.4	3.5 ± 0.1
	4 ± 2	10 ± 1
N 8	7 ± 2	12.1 ± 0.1
N 9	4.3 ± 0.3	6 ± 3

Optimization of C-H Amination

To a scintillation vial (5 mL) was added benzene (0.50 mL, 5.6 mmol, 40 equiv; or 0.75 mL, 8.4 mmol, 60 equiv.), palladium acetate (10 to 15 mol %), ligand (10 to 18 mol %) and amination reagent (140 μ mol, 1.0 equiv). The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 24 hr. The reaction was allowed to cool to room temperature.

<u>Product Analysis by NMR (for synthesis of PhNHAc):</u> 0.50 mL (corresponding to 5.0 mg; 29 μ mol of 1,3-dinitrobenzene) of a standard solution containing NMR solvent and 1,3-dinitrobenzene as NMR standard (50 mg; 290 μ mol in 5.0 mL of CDCl₃) were added to the mixture. The resulting solution was filtered through celite. The amount of product formed was determined by integration of the NMR signals at 8.97 ppm (1H, 1,3-dinitrobenzene) and 2.21 ppm (3H, PhNHC(O)<u>CH₃</u>) (relaxation time = 15.0 s, NS = 16).

<u>Product Analysis by GC (for synthesis of PhNHC(O)CF₃):</u> 10 μ L of PhCI (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL saturated, aqueous K₂CO₃ solution. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. The amount of product formed was determined by calibrated GC analysis.

Table 4. Calibrated GC Yields of C-H Amination with Bulky Ligands. Conditions: benzene (40 or 60 equiv), $Pd(OAc)_2$ (10 to 15 mol %), ligand (10 to 18 mol %) and amination reagent (140 μ mol, 1.0 equiv), 100 °C, 24 hr.

	1 equiv. R H	N-OAc, additi	ve		
Ph	-H x mol % Pc	l(OAc) ₂ /ligand	→ Ph-N d	IHR	
Additive	Amination Reagent	Equivalent Benzene	mol % Pd(OAc)₂	Ligand (mol %)	Yield PhNHR
none	AcO-NHAc	40	10	1 (10)	11 ± 1%
0.6 eg AcOH	"	"	"	"	27 ± 2%
1.0 eq AcOH	"	"	н	"	29 ± 2%
1.3 eq AcOH	II	"	ш	"	25 ± 2%
5 mol % AqOAc	"	"	н	"	27 ± 1%
10 mol % ĂgOAc	"	"	"	II	20 ± 2%
none	AcO-NHC(O)CF ₃	"	"	1 (10)	21± 2%
1 ea AcOH	11	"	"		22 ± 2%
5 mol % AgOAc	H	"	н	"	23 ± 1%
1.0 eq AcOH	AcO-NHAc	"	"	4 (10)	16 ± 1%
5 mol % AgOAc	"	"	"	"``	29 ± 1%
10 mol % ĂgOAc	II	"	"	"	29 ± 1%
1.0 eq AcOH	AcO-NHAc	"	"	5 (10)	16 ± 1%
5 mol % AgOAc	"	"	"	"	29 ± 1%
10 mol % AgOAc	"	"	n	"	30 ± 1%
none	AcO-NHAc	40	10	8 (10)	12 ± 3%
1 eq AcOH	II	"	ш	"	45 ± 3%
5 mol % AgOAc	"	"	n	Ш	40 ± 2%
none	AcO-NHC(O)CF ₃	II	11	8 (10)	13 ± 2%
1 eg AcOH	"	"	"		43 ± 2%
5 mol % AgOAc	"	"	"	н	46 ± 2%
none	AcO-NHAc	40	10	6 (10)	13 ± 2%
0.2 eg AcOH	"	"	"	"	40 ± 3%
5 mol % AgOAc	"	"	"	н	42 ± 2%

S35

none Ac	O-NHC(O)CF ₃	"	Ш	6 (10)	19 ± 3%
0.2 eq AcOH "		н	"	"	32 ± 2%
0.4 eq AcOH "		"	"	"	34 ± 3%
0.6 eq AcOH "		п	"	"	31 ± 2%
1.0 eq AcOH "		"	"	"	27 ± 2%
2.5 mol % AgOAc "		н	н	"	22 ± 3%
5 mol % AgÕAc "		н	"	"	44 ± 2%
10 mol % ĂgOAc "		"	"	"	31 ± 3%
none Ac	O-NHAc	40	10	9 (10)	11±1%
1 eg AcOH "		п	"	"	31 ± 2%
1 eg AcOH. 90 °C "		н	п	"	$23 \pm 2\%$
1 eq AcOH, 80 °C "		"	"	"	7 ± 2%
0.4 eq AcOH "		"	"	"	34 ± 2%
0.2 eq AcOH "		п	"	"	36 ± 2%
0.1 eq AcOH "		"	"	"	29 ± 1%
5 mol % AgOAc "		н	п	"	$43 \pm 2\%$
5 mol % AgOAc "		"	"	9 (15)	33±2%
5 mol % AgOAc "		60	"	9 (15)	37 ± 2%
5 mol % AgOAc "		"	15	9 (18)	42 ± 3%
none Ac	O-NHC(O)CF ₃	40	10	9 (10)	14 ± 2%
1 eg AcOH "		"	"		39 ± 3%
5 mol % AgOAc "		"	"	"	$31 \pm 1\%$
5 mol % AgOAc "		"	"	9 (15)	$35 \pm 2\%$
5 mol % AgOAc "		60	п	9 (15)	$39 \pm 3\%$
5 mol % AgOAc "		"	15	9 (18)	43 ± 2%
none Ac	O-NHAc	40	10	7 (10)	15 ± 2%
		"		ц - у Ш	31 + 3%
		н	"	"	42 + 2%
		н	"	"	40 + 2%
2.5 mol % AgOAc		"	"	"	$\frac{10}{23} \pm 2\%$
5 mol % AqOAc "		"	"	"	47 + 1%
10 mol % AgOAc "		"	"	"	34 + 2%
5 mol % AqOAc "		"	"	7 (15)	50 + 2%
5 mol % AgOAc "		60	"	7 (15)	51 + 2%
5 mol % AgOAc "		"	15	7 (18)	52 + 3%
7 5mol % AqOAc "		"	15	7 (18)	49 + 2%
10 mol % AgOAc "		н	15	7 (18)	$33 \pm 2\%$

±1%
± 3%
±2%
± 2%
±2%
±2%
± 3%
±2%
± 3%
± 3%
± 1%
±2%
±2%
± 2%
± 3%
± 2%
± 2%
± 2%
± 3%
± ± ± ± ± ± ± ± ± ± ± ± ±

Figure 15. Ligands used in Reaction Optimization.

Study of Additive Effects

In analogy to the conditions established above, benzene (0.50 mL, 5.6 mmol, 40 equiv), Pd(OAc)2 (3.1 mg, 14 μ mol, 10 mol %), additive (5.0 - 10 mol %), ligand 7 (10 mol %) and AcO-NHAc (1.0 equiv) were added to a scintillation vial (5 mL). The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 24 hr. The reaction was allowed to cool to room temperature. Product yields were determined by calibrated ¹H NMR analysis and are tabulated in Scheme 1.

ᇚᆸ	1 equiv. AcO-NHAc, ad			
РП-П	10 mol % Pd(OAc) ₂ / 7 , 2	Pn-NHAC		
	additive	Yield ^a		
	5 mol % AgOAc 10 mol % " 5 mol % AgSbF ₆ 5 mol % NBu ₄ OAc 10 mol % NMe ₄ OAc 5 mol % AgSbF ₆ /NBu ₄ OAc 5 mol % NMe ₄ BF ₄	47% 34% 23% 17% 18% 28% 20%		

^aConditions: 40 equiv. PhH, 100 ^oC.

Scheme 1. Additive Effects on C-H Amination with Pd(OAc)₂/7.

Product Inhibition Study

To a scintillation vial (5 mL) was added C₆H₆ (0.50 mL, 5.6 mmol, 40 equiv.), Pd(OAc)₂ (3.1 mg, 14 µmol, 110 mol %), ligand (14 µmol, 10 mol %) and AcO-NHAc (16.0 mg, 140 µmol, 1.0 equiv). To evaluate the effect of product presence on C-H amination activity, PhNHAc (9.5 mg, 70 µmol, 0.50 equiv) was added. The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 24 h. The reaction was allowed to cool to room temperature. 10 µL of PhCI (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL saturated, aqueous K₂CO₃ solution. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. The product yield was determined by calibrated GC analysis.

Table 5. GC Yields for Product Inhibition Study. Conditions: C ₆ H ₆ (40 equiv),	
Pd(OAc) ₂ (10 mol %), ligand (10 mol %), AcNH-OAc (1.0 equiv), 100 °C, 24 h.	

	1 equiv. AcHN-OAc	, additive		
Pn-H	10 mol % Pd(OAc) ₂ /ligand with/without 50 mol % PhNHAc			
Conditions/Additive		GC PhN	Yield of newly formed IHAc	
Ligand 1, 1.0 eq. AcOH		29%)	
Ligand 1, 1.0 eq. AcOH,	50 mol % PhNHAc	10%)	
Ligand 8, 1.0 eq. AcOH		45%)	
Ligand 8, 1.0 eq. AcOH,	50 mol % PhNHAc	18%)	
Ligand 9, 1.0 eq. AcOH		31%)	
Ligand 9, 1.0 eq. AcOH,	50 mol % PhNHAc	17%		

Competition Kinetic Isotope Effect Study

To a scintillation vial (5 mL) was added C₆H₆ (0.37 mL, 330 mg, 4.2 mmol, 30 equiv.), C₆D₆ (0.37 mL, 350 mg, 4.2 mmol, 30 equiv.), Pd(OAc)₂ (4.7 mg, 21 µmol, 15 mol %), ligand **7** (5.4 mg, 25 µmol, 18 mol %) and AcO-NHAc (16.0 mg, 140 µmol, 1.0 equiv). The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 2, 4, or 24 hr. The reaction was allowed to cool to room temperature. 10 µL of PhCl (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL saturated, aqueous K₂CO₃ solution. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. The product yield was determined by calibrated GC analysis.

The competition kinetic isotope effect was determined by measuring the ratio of deuterated and non-deuterated products through GCMS analysis, using the ratios of the mass peaks at m/z = 135 (C₆D₅-NHAc) and m/z = 140 (C₆H₅-NHAc) (see Table 6)

Table 6. Kinetic Isotope Effect After Different Reaction Times. Conditions: C_6H_6 (30 equiv), C_6D_6 (30 equiv), Pd(OAc)₂ (15 mol %), ligand 7 (18 mol %) and amination reagent (140 μ mol, 1.0 equiv), 100 °C, 24 hr.

C ₆ H ₆ + C ₆ D ₆ — 1 : 1	1 equiv. AcHN-OAc, add 15 mol % Pd(OAc) ₂ / 18 mol %	\rightarrow C ₆ H ₅ -NHAc + C ₆ D ₅ -NHAc
Reaction Time	GC Yield	$KIE = (m/z C_6 D_5 - NHAc)/$
		(m/z C ₆ H₅-NHAc)
2 h	11 ± 2%	(m/z C ₆ H₅-NHAc) 3.01
2 h 4 h	11 ± 2% 24 ± 1%	(m/z C₀H₅-NHAc) 3.01 2.88

C-H Amination of Benzene in Presence of AcOH-D₄

In analogy to the conditions established above (Table 4), benzene (0.50 mL, 438 mg, 5.6 mmol, 40 equiv.), $Pd(OAc)_2$ (3.1 mg, 14 µmol, 10 mol %), $AcOH-D_4$ (5.1 µL, 5.4 mg, 84 µmol, 0.60 equiv.), ligand **7** (3.0 mg, 14 µmol, 10 mol %) and AcNH-OAc (16.4 mg, 0.14 mmol, 1.0 equiv.) were added to a scintillation vial. The vial was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and heated to 100 °C for 24 h. The reaction was then allowed to cool to room temperature. Et₂O was added and the mixture was filtered through celite and was directly analyzed by GCMS.

Figure 16. GCMS Spectrum of Benzene Remaining in the Reaction Mixture.

Figure 17. GCMS Spectrum of Commercial Benzene used as Solvent in the Reaction.

Table 7. Abundance of m/z 78 to 84 for C6H6 recovered from reaction in presence of AcOH-D₄ vs. unreacted benzene used as solvent.

	Relative Abundance				
m/z	Commerical C ₆ H ₆	C_6H_6 recovered from reaction in			
		presence of ACOH-D ₄			
78	89.52%	88.86%			
79	10.16%	10.74%			
80	0.30%	0.37%			
81	0.01%	0.01%			
82	0.00%	0.00%			
83	0.00%	0.00%			
84	0.00%	0.01%			

Based on the data above and the fragmentation of unreacted benzene-D₆, the isotope distribution (Table 8) was calculated by deconvolution of GCMS raw data using a benzene H/D exchange worksheet reported by Periana and coworkers.^[24] Quantities of each isotopomer and the corresponding equivalent values are calculated based on the remaining amount of benzene in the reactions mixture (0.504 mmol), which is the difference between the initial amount of C₆H₆ (5.6 mmol) and the amount of PhNHAc produced (40%, 0.056 mmol; see Table 4 above).

^[24] Young, K. J. H.; Meier, S. K.; Gonzales, J. M.; Oxgaard, J.; Goddard, W. A.; Periana, R. A., *Organometallics* **2006**, *25* (20), 4734-4737.

Table 8. Calculated Isotope Distribution of Benzene Recovered from ReactionMixture.

Isotope	C ₆ H ₆	C ₆ H₅D	C ₆ H ₄ D ₂	C ₆ H ₃ D ₃	C ₆ H ₂ D ₄	C ₆ HD ₅	C ₆ D ₆
Abundance	99.22%	0.75%	0.00%	0.01%	0.00%	0.00%	0.01%
equivalent (based 0.14 mmol AcNH-OAc = 1.00 equiv.)	39.29	0.30	0.00	0.00	0.00	0.00	0.00

Figure 18. GCMS Spectrum of Ph-NHAc from Reaction in the Presence of AcOH-D₄.

Figure 19. GCMS Spectrum of Commercial Ph-NHAc.

Table 9. Abundance of m/z 135 to 144 for PhNHAc from reaction in presence of AcOH-D₄ vs. independently synthesized.

	Relative Abundance			
m/z		PhNHAc formed in reaction in		
		presence of AcOH-D ₄		
135	90.69%	85.09%		
136	8.60%	12.86%		
137	0.61%	1.34%		
138	0.04%	0.14%		
139	0.00%	0.05%		
141	0.03%	0.00%		
142	0.01%	0.00%		
143	0.01%	0.00%		
143	0.02%	0.00%		
144	0.00%	0.05%		

Preparation of (^tBu₂bipy)Pd(tol)(OAc) (11)

(^tBu₂bipy)Pd(tol)(OAc) was prepared in analogy to the known synthesis of (^tBu₂bipy)Pd(Ph)(OAc).²⁵

In a nitrogen-filled glovebox, (^tBu₂bipy)Pd(tol)(I)^[26] (150 mg, 0.25 mmol, 1.00 eq.), AgOAc (120 mg, 0.72 mmol, 2.87 eq.), and 5 mL of CHCl₃ were added to a 20 mL scintillation vial, which was sealed with a Teflon-lined vial cap. After stirring at room temperature for 20 min, the mixture was filtered through celite. The collected filtrate was dried under vacuum to yield (^tBu₂bipy)Pd(tol)(OAc) (120 mg, 0.23 mmol, 92%) as a yellow solid, which was stored under inert atmosphere.

¹H NMR (400 Mz, CDCl₃, 25 °C): δ = 8.45 (m, 1H; bipy), 8.10 (m, 1H; bipy), 7.91 (m, 2H; bipy), 7.51 (m, 1H; bipy), 7.39 (m, 2H; tolArH), 7.24 (m, 1H; bipy), 6.90 (m, 2H; tolArH), 2.30 (s, 3H, tol(CH₃)), 2.08 (s, 3H, OCOCH₃), 1.41 (s, 9H; ^tBu), 1.37 ppm (s, 9H; ^tBu).

²⁵Y.-T. Tsoi, Z. Zhou, A. S. C. Chan, W.-Y. Yu, *Org. Lett.* **2010**, 12, 4506.

²⁶ (^tBu₂bipy)Pd(tol)(I) was prepared according to the following reference: Nicholas D. Ball, Jeff W. Kampf, Melanie S. Sanford. *J. Am. Chem. Soc.*, **2010**, *132*, 2878–2879.

¹³C NMR (400 Mz, CDCl₃, 25 °C): δ = 177.89 (CO), 163.64 (bipy), 163.13 (bipy), 156.63 (bipy), 153.37 (bipy),152.58 (bipy),149.02 (bipy), 148.45 (tolAr), 134.73 (tolAr), 132.60 (tolAr), 127.83(tolAr), 123.74 (bipy), 123.63 (bipy), 118.44 (bipy), 117.76 (bipy), 35.52 (*C*(CH₃)₃), 35.45 (*C*(CH₃)₃), 30.56 (C(*C*H₃)₃), 30.40 (C(*C*H₃)₃), 24.36 (OCO*C*H₃), 21.01 ppm (tol(CH₃)).

Figure 20. ¹H NMR Spectrum of (^tBu₂bipy)Pd(tol)(OAc) in CDCl₃.

Figure 21. ¹³C NMR Spectrum of (^tBu₂bipy)Pd(tol)(OAc) in CDCl₃.

Reactions between (^tBu₂bipy)Pd(tol)(OAc) (11) and AcO-NHAc

(^IBu₂bipy)Pd(tol)(OAc) (10 mg, 0.019 mmol, 1.0 eq), AcNHOAc (2.3 mg, 0.019 mmol, 1.0 eq), additives (as indicated below; see Table 10), and 1.0 mL of C_6D_6 were added to a scintillation vial. The vial was sealed with a Teflon-lined cap, placed on a preheated heating block and stirred at 85 °C for 24 h. The reaction was allowed to cool to room temperature and 100 µl of a standard solution of 1,3-dinitrobenzene (100 mg of 1,3-dinitrobenzene in 10 ml of CDCl₃; corresponding to 0.006 mmol, 0.31 equiv. of 1,3-dinitrobenzene) was added as internal NMR standard. The resulting mixture was filtered through celite. The yields of toluene, 4,4'-dimethylbiphenyl, 4-methylacetanilide and *p*-tolyl acetate formed were determined by quantitative NMR analysis (NS = 32, d1 = 15 s). Furthermore, GCMS was conducted to confirm the identities of the products. Pd black precipitation was absent in all of these stoichiometric reactions.

Figure 22. Example of ¹H NMR spectrum used to determine product yields.

Table 10. Reactivity of Isolated Pd-Aryl Complex in Presence of Different Additives.

10 eq.

Additives Products	None	10 eq AcOH	1 eq C₅F₅N	1 eq AgOAc
	5%	2.5%	3.8%	5%
	32%	6.6%	22%	32.5%
NHAc	0%	0%	14%	6.6%
OAc	< 1%	0%	< 1%	< 1%

Amination Reagent Scope

In analogy to the best conditions established above, benzene (0.75 mL, 660 mg, 8.4 mmol, 60 equiv.), Pd(OAc)₂ (4.7 mg, 21 mmol, 15 mol %), AgOAc (1.2 mg, 7.0 mmol, 5.0 mol %), ligand **7** (5.4 mg, 25 mmol, 18 mol %) and amination reagent (140 μ mol, 1.0 equiv) were added to a scintillation vial (5 mL). The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 24 hr. The reaction was allowed to cool to room temperature. Product yields were determined by calibrated GC or ¹H NMR analysis and are tabulated in Table 11.

Product Analysis by NMR (for synthesis of PhNHAc, PhNHC(=O)Et, PhNHC(=O)'Pr,

and PhNHC(=O)Ph): 0.50 mL (corresponding to 5.0 mg; 29 μ mol of 1,3-dinitrobenzene) of a standard solution containing NMR solvent and 1,3-dinitrobenzene as NMR standard (50 mg; 290 μ mol in 5.0 mL of CDCl₃) were added to the reaction mixture after most of the solvent (benzene) had been removed by applying oil-pump-vacuum. The resulting solution was filtered through celite. The amount of product formed was determined by integration of the ¹H NMR signals at 8.97 ppm (1H, 1,3-dinitrobenzene) and 2.21 ppm (3H, PhNHC(O)<u>CH₃</u>), 3.56 ppm (2H, PhNHC(=O)<u>CH₂CH₃</u>), 1.14 ppm (6H, PhNHC(=O)CH(<u>CH₃)₂</u>), or 7.41 ppm (2H, PhNHC(=O)<u>C₆H₅</u>) (relaxation time = 15.0 s, NS = 16). PhOAc yields were obtained by integrating their ¹H NMR signals at 2.32 ppm (3H, PhOC(O)<u>CH₃</u>) and Ph-Ph yields were obtained from GC with PhCl as internal standard, respectively. All products were additionally identified by GCMS in the reaction mixture and by comparison of the obtained ¹H NMR data to the ¹H NMR spectra of independently obtained, identical product.

<u>Product Analysis by GC (for synthesis of PhNHC(O)CF₃):</u> 10 μ L of PhCI (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL saturated, aqueous K₂CO₃ solution. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. The amount of product formed was determined by calibrated GC analysis.

<u>Product Analysis by GC (for synthesis of PhNHTs):</u> 10 μ L of PhCl (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL deionized water. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. The amount of product formed was determined by calibrated GC analysis.

Table 11. NMR/GC Yields of Acylanilines with Different Amination Reagents.

Conditions: benzene (60 equiv), Pd(OAc)₂ (15 mol %), ligand **7** or **4** (18 mol %) and amination reagent (140 μ mol, 1.0 equiv), 100 °C, 24 h.

Ph-H 1 equiv. RHN-OAc, 5 mol % AgOAc Ph-H 15 mol % Pd(OAc) ₂ / 18 mol % 7 or 4 Ph-NHR				
Amination Reagent	Product	Yield	Byproducts (Yield)	
	H N.Ph O	52 ± 3% ^a	Ph-Ph (7 ± 2%) PhOAc (3± 1%)	
F ₃ C H N OAc	F ₃ C H N Ph	53 ± 2% ^b	Ph-Ph (8 ± 2%) PhOAc (5± 1%)	
	H N Ph	14 ± 2% ^a	Ph-Ph (12 ± 1%) PhOAc (3± 1%)	
		11 ± 2% ^{a,c}	Ph-Ph (25 ± 1%) PhOAc (5 ± 2%)	
	H N Ph	$3 \pm 0\%^{a}$	Ph-Ph (1 ± 0%) PhOAc (1 ± 0%)	
		2 ± 1% ^{a,c}	Ph-Ph (8 ± 2%) PhOAc (1 ± 1%)	
Ph H N OAc	Ph H N Ph	6 ± 0% ^a	Ph-Ph (8.0 ± 0.3%) PhOAc (5 ± 1%)	
		8 ± 1% ^{a,c}	Ph-Ph (36 ± 1%) PhOAc (8 ± 1%)	
S-N OOAc	s ^N .Ph	22 ± 2% ^a	Ph-Ph (7± 1 %) PhOAc (7± 2%)	
		$8 \pm 2\%^{a,c}$	Ph-Ph (0%) PhOAc (1 ± 0%)	
^a Analysis by 1H NMR. ^b Analysis by calibrated GC/FID. ^c 18 mol % quinoline (4) was used.				

Arene Substrate Scope

In analogy to the best conditions established above, arene (60 equiv.), palladium acetate (4.7 mg, 21 mmol, 15 mol %), ligand **7** (5.4 mg, 25 mmol, 18 mol %) and amination reagent (140 μ mol, 1.0 equiv) were added to a scintillation vial (5 mL). The vessel was sealed with a Teflon-lined vial cap, placed on a pre-heated heating block and stirred at 100 °C for 24 hr. The reaction was allowed to cool to room temperature. 10 μ L of PhCI (GC standard) were added, followed by addition of 10 mL of EtOAc and 5 mL saturated, aqueous K₂CO₃ solution. The mixture was thoroughly shaken and the organic layer was separated and filtered through celite. Product yields were determined by calibrated GC analysis and are tabulated in Table 12.

Table 12. Yields of Acylanilines with AcNHOAc/F₃CCONH-OAc. Conditions: Arene (60 equiv), Pd(OAc)₂ (15 mol %), ligand F (18 mol %), AgOAc (5 mol %), AcNHOAc (140 μ mol, 1.0 equiv), 100 °C, 24 h.

	1 equiv. AcHN- 5 mol % AgO	OAc Ac	NHAc	
60 equiv.	15 mol % Pd(OAc) ₂ / 1 24 h	8 mol % 7		
Substrate	Product	Yield	Selectivity	
CI	AcHN	11 ± 2%	1:2:7 (o: <i>m</i> : <i>p</i>)	
CO ₂ Et	AcHN	14 ± 2%	1:2:7 (<i>o:m:p</i>)	
Br	AcHN	12 ± 2%	1:3:7 (<i>o:m:p</i>)	
	AcHN	21 ± 2%	1:3:7 (<i>o:m:p</i>)	
^t Bu	AcHN	13 ± 3%	1:6:11 (<i>o</i> : <i>m</i> : <i>p</i>)	
αβ	AcHN	17 ± 2%	1:2 (α:β)	
	AcHN	16 ± 2%	n/a	
$\beta \qquad \qquad$		15 ± 2%	1:3:0 (α:β:γ)	