Supporting information

Modification of Sn-Beta zeolite: Characterization of acido-basic properties and catalytic performance in Baeyer-Villiger oxidation

Ryoichi Otomo, a,b Ryota Kosugi, a Yuichi Kamiya, b Takashi Tatsumi, a and Toshiyuki Yokoi*, a

a Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
b Faculty of Environmental Earth Science, Hokkaido University, Nishi 5, Kita 10, Kita-ku, Sapporo 060-0810, Japan

*Corresponding author: Toshiyuki Yokoi
Tel: +81-45-924-5265, Fax: +81-45-924-5282, E-mail: yokoi@cat.res.titech.ac.jp
Fig. S1 UV-Vis spectra of pre-treated Sn-Beta samples. (a) Sn-Beta, (b) Sn-Beta-Li-L, (c) Sn-Beta-Na-L, and (d) Sn-Beta-Cs-L. The samples were pretreated in vacuo at 400 °C for 1 h. The spectra were normalized by adjusting the peak intensity at 210 nm similar.
Fig. S2 UV-Vis spectra of wet Sn-Beta samples.
Fig. S3 IR spectra of CD$_3$CN molecules adsorbed on (a) Sn-Beta-Na-S, (b) Sn-Beta-K-S, (c) Sn-Beta-Cs-S, and (d) Sn-Beta-H$_2$O. From bottom (red) to top (purple), CD$_3$CN pressure was increased from 5 to 200 Pa.
Fig. S4 OH-region difference IR spectra of Sn-Beta before and after adsorption of CD$_3$CN. From bottom (red) to top (purple), CD$_3$CN pressure was increased from 5 to 200 Pa.
Fig. S5 XRD patterns of (a) Sn-Beta and (b) Sn-Beta-H₂O.
Fig. S6 Gas chromatograms for the BV oxidation of cyclohexanone with (a) Sn-Beta-Na-S, (b) Sn-Beta, and (c) Al-Beta.

Reaction conditions: catalyst, 50 mg; cyclohexanone, 3 mmol; H₂O₂ (35 wt.%) 3 mmol; 1,4-dioxane, 8.5 ml; temperature, 90 °C; reaction time, 2 h (for Al-Beta, 1 h).
Fig. S7 IR spectra of CHCl₃ molecules adsorbed on (a) Sn-Beta-Na-S, (b) Sn-Beta-K-S, and (c) Sn-Beta-Cs-S. From bottom (red) to top (green), CD₃CN pressure was increased from 50 to 200 Pa.