Methylation of Aromatic Amines and Imines Using Formic Acid over Heterogeneous Pt/C Catalyst

Lei Zhu,*a Lian-Sheng Wang, Bojie Li, Wei Li, and Boqiao Fu

aCollege of Chemistry and Materials Science, Hubei Engineering University, Hubei, 432000, China
Email: Lei.zhu@hbeu.edu.cn

Supporting Information

Table of Contents
1. General Information S2
2. Optimization of Reaction Conditions S3
3. Experimental Procedures and Analytic Data S4–S12
4. 13C Labeling Experiments S13
5. 1H and 13C NMR Spectra S14–S44
1. General Information

A. Materials:

All reactions were conducted in oven-dried Schlenk tubes under argon atmosphere (purity ≥ 99.99%) unless otherwise mentioned. Reagents were commercially supplied and used as received. 13C-HCOOH (99%-13C, purchased from Cambridge Isotope Laboratories, Inc.). Pt/C (5 wt %, 50 wt % of water) was bought from Alfa. Organic solutions were concentrated under reduced pressure on Buchi rotary evaporator.

B. Analytical Methods:

Gas chromatographic (GC) analysis was acquired on a Shimadzu GC-2014 Series GC System equipped with a flame-ionization detector. 1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Data for 1H-NMR are reported as follows: chemical shift (ppm, scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and/or multiplet resonances, br = broad), coupling constant (Hz), and integration. Data for 13C-NMR are reported in terms of chemical shift (ppm, scale), multiplicity, and coupling constant (Hz). Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh).
2. Optimization of reaction conditions

Table S1: Screening of different solventsa,b

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>55 21</td>
</tr>
<tr>
<td>2</td>
<td>Dioxiane</td>
<td>49 46</td>
</tr>
<tr>
<td>3</td>
<td>CH$_2$OH</td>
<td>2 40</td>
</tr>
<tr>
<td>4</td>
<td>Toluene</td>
<td>60 6</td>
</tr>
<tr>
<td>5</td>
<td>Cyclohexane</td>
<td>57 8</td>
</tr>
<tr>
<td>6</td>
<td>CH$_2$Cl$_2$</td>
<td>39 6</td>
</tr>
<tr>
<td>7</td>
<td>CH$_3$CN</td>
<td>14 81</td>
</tr>
<tr>
<td>8</td>
<td>DMF</td>
<td>49 34</td>
</tr>
</tbody>
</table>

a Reaction conditions: N-Methylaniline (0.3 mmol), Ph$_2$SiH$_2$ (3.0 equiv), Pt/C (0.5 mol%), HCO$_2$H (2.0 equiv), solvent (1.0 mL), 80 °C, 15 h.

b Determined by GC using n-dodecane as internal standard.

Table S2: Catalyst recycling experiment

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Recycling number</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>73</td>
</tr>
</tbody>
</table>

Recycling results of Pt/C catalysts under the following reaction conditions: N-Methylaniline (0.3 mmol), PhSiH$_3$ (2.5 equiv), Pt/C (0.1 mol%), HCO$_2$H (2.0 equiv), toluene (1.0 mL), 80 °C, 15 h. The yield was determined by GC using n-dodecane as internal standard.
3. Experimental procedures and Analytic data

General Procedure A (methylation of amines)

For the methylation reaction of primary amines: A 10 mL Schlenk tube containing a stirring bar was charged with Pt/C (0.3 mol%). The tube was then evacuated and back-filled with argon three times. Toluene (1.0 mL), substrate (0.3 mmol), HCO$_2$H (3.0 equiv) and PhSiH$_3$ (5.0 equiv) were added subsequently.

For the methylation reaction of secondary amines: A 10 mL Schlenk tube containing a stirring bar was charged with Pt/C (0.1 mol%). The tube was then evacuated and back-filled with argon three times. Toluene (1.0 mL), substrate (0.3 mmol), HCO$_2$H (2.0 equiv) and PhSiH$_3$ (2.5 equiv) were added subsequently.

The reaction mixture was heated to 80 °C (oil bath). After stirring for 15 h, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate (3 mL), quenched with aqueous NaOH (3 M solution; 3 mL) carefully. The yields were analyzed by GC using n-dodecane as internal standard. To determine the isolated yield of the methylated amines, the mixture was extracted with ethyl acetate (three times) and the combined organic layers were dried over Na$_2$SO$_4$. The organic phase was filtered, concentrated, and purified by silica gel column chromatography to give the corresponding methylated amines.

General Procedure B (methylation of imines)

A 10 mL Schlenk tube containing a stirring bar was charged with Pt/C (0.3 mol%). The tube was then evacuated and back-filled with argon three times. Toluene (1.0 mL) was added subsequently, then substrate (0.3 mmol), HCO$_2$H (2.0 equiv) and PhSiH$_3$ (3.0 equiv) were added. The reaction mixture was heated to 80 °C (oil bath). After stirring for 15 h, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate (3 mL), quenched with aqueous NaOH (3 M solution; 3 mL) carefully. The yields were analyzed by GC using n-dodecane as internal standard. To determine the isolated yield of the methylated amines, the mixture was extracted with ethyl acetate (three times) and the combined organic layers were dried over Na$_2$SO$_4$. The organic phase was filtered, concentrated, and purified by silica gel column chromatography to give the corresponding products.

Spectral Data

\[
\begin{align*}
\text{N,N,4-trimethylaniline (2): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO}_2\text{H, 2.5 equiv. PhSiH}_3, 1.0 \text{ mL toluene, obtained in 80% yield as a yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2013, 52, 12156).} \\
^1\text{H NMR (400 MHz, CDCl}_3) \delta 7.06 (d, J = 8.6 Hz, 2H), 6.70 (d, J = 8.5 Hz, 2H), 2.90 (s, 6H), 2.26 (s, 3H). \\
^13\text{C NMR (101 MHz, CDCl}_3) \delta 148.74, 129.61, 126.32, 113.33, 41.18, 20.28.
\end{align*}
\]
N-ethyl-N-methylaniline (3): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL toluene, obtained in 76% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. *J. Am. Chem. Soc.* 2013, 135, 1549).

¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 8.0 Hz, 2H), 6.91 – 6.51 (m, 3H), 3.39 (q, *J* = 7.1 Hz, 2H), 2.89 (s, 3H), 1.11 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 149.06, 129.21, 116.19, 112.52, 46.92, 37.55, 11.22.

N-isopropyl-N-methylaniline (4): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL cyclohexane, obtained in 64% yield as light yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. *Angew. Chem. Int. Ed.* 2015, 54, 15207).

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.15 (m, 2H), 6.84 – 6.76 (m, 2H), 6.74 – 6.62 (m, 1H), 4.09 (dt, *J* = 13.2, 6.6 Hz, 1H), 2.73 (s, 3H), 1.16 (d, *J* = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 150.14, 129.08, 116.38, 113.29, 48.88, 29.75, 19.28.

N-methyl-N-phenylaniline (5): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL toluene, obtained in 72% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. *Organometallics*, 2014, 33, 1587).

¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 8.0 Hz, 4H), 7.13 – 7.04 (m, 4H), 6.99 (t, *J* = 7.3 Hz, 2H), 3.35 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.98, 129.15, 121.23, 120.40, 40.21.

1-methylindoline (6): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL cyclohexane, obtained in 80% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. *Angew. Chem. Int. Ed.* 2014, 53, 12876).

¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.03 (m, 2H), 6.72 – 6.64 (m, 1H), 6.53 – 6.45 (m, 1H), 3.28 (t, *J* =
= 8.1 Hz, 2H), 2.94 (t, J = 8.1 Hz, 2H), 2.75 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 153.29, 130.37, 127.35, 124.30, 117.91, 107.36, 56.19, 36.38, 28.75.

1,2-dimethylindoline (7): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 78% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2014, 53, 10476).

1H NMR (400 MHz, CDCl$_3$) δ 7.06 (dd, J = 17.1, 7.8 Hz, 2H), 6.65 (t, J = 7.3 Hz, 1H), 6.45 (d, J = 7.8 Hz, 1H), 3.46 – 3.31 (m, 1H), 3.13 – 3.01 (m, 1H), 2.70 (s, 3H), 2.65 – 2.53 (m, 1H), 1.32 (d, J = 6.1 Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 153.48, 129.22, 127.32, 123.97, 117.81, 107.18, 62.83, 37.34, 33.77, 18.75.

1-methyl-1,2,3,4-tetrahydroquinoline (8): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL cyclohexane, obtained in 85% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. Chem. Eur. J. 2014, 20, 7878).

1H NMR (400 MHz, CDCl$_3$) δ 7.00 (t, J = 6.9 Hz, 1H), 6.88 (d, J = 6.8 Hz, 1H), 6.61 – 6.48 (m, 2H), 3.14 (t, 2H), 2.81 (s, 3H), 2.69 (t, J = 6.4 Hz, 2H), 1.91 (dt, J = 12.9, 6.3 Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 146.75, 128.85, 127.08, 122.91, 116.26, 111.02, 51.31, 39.18, 27.81, 22.47.

N,N,3-trimethylaniline (9): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 69% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. J. Am. Chem. Soc, 2016, 138, 766).

1H NMR (400 MHz, CDCl$_3$) δ 7.22 – 6.77 (m, 1H), 6.70 – 6.43 (m, 3H), 2.93 (s, 6H), 2.32 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 150.66, 138.71, 128.91, 117.72, 113.52, 109.97, 40.73, 21.87.
4-methoxy-N,N-dimethylaniline (10): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL toluene, obtained in 74% yield as a white solid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. *J. Am. Chem. Soc.* 2013, 135, 1549).

\[^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3) \delta 6.87 – 6.82 (m, 2H), 6.78 – 6.73 (m, 2H), 3.76 (s, 3H), 2.86 (s, 6H).\]

\[^{13}\text{C} \text{NMR} (101 \text{ MHz, CDCl}_3) \delta 151.98, 145.70, 114.92, 114.59, 55.72, 41.83.\]

![4-methoxy-N,N-dimethylaniline](image)

4-bromo-N,N-dimethylaniline (11): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL toluene, obtained in 79% yield as a white solid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. *Angew. Chem. Int. Ed.* 2011, 50, 523).

\[^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3) \delta 7.29 (d, J = 9.1 \text{ Hz, 2H}), 6.58 (d, J = 9.0 \text{ Hz, 2H}), 2.92 (s, 6H).\]

\[^{13}\text{C} \text{NMR} (101 \text{ MHz, CDCl}_3) \delta 149.44, 131.65, 114.09, 108.51, 40.57.\]

![4-bromo-N,N-dimethylaniline](image)

3-chloro-N,N-dimethylaniline (12): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL toluene, obtained in 93% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. *Angew. Chem. Int. Ed.* 2015, 54, 9042).

\[^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3) \delta 7.14 (t, J = 8.3 \text{ Hz, 1H}), 6.82 – 6.64 (m, 2H), 6.60 (d, J = 8.2 \text{ Hz, 1H}), 2.95 (s, 6H).\]

\[^{13}\text{C} \text{NMR} (101 \text{ MHz, CDCl}_3) \delta 150.43, 133.93, 128.91, 115.14, 111.16, 109.44, 39.35.\]

![3-chloro-N,N-dimethylaniline](image)

ethyl 4-(dimethylamino)benzoate (13): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO₂H, 2.5 equiv. PhSiH₃, 1.0 mL toluene, obtained in 91% yield as white solid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. *Chem. Eur. J.* 2014, 20, 7878).

\[^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3) \delta 7.91 (d, J = 9.1 \text{ Hz, 2H}), 6.62 (d, J = 9.1 \text{ Hz, 2H}), 4.31 (q, J = 7.1 \text{ Hz, 2H}), 3.01 (s, 6H), 1.36 (t, J = 7.1 \text{ Hz, 3H}).\]

\[^{13}\text{C} \text{NMR} (101 \text{ MHz, CDCl}_3) \delta 167.05, 153.24, 131.20, 117.29, 110.67, 60.12, 40.05, 14.51.\]
N,N-dimethyl-4-nitroaniline (14): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 61% yield as yellow solid (Eluent: petroleum ether/ethyl acetate = 10/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2013, 52, 12156).

1H NMR (400 MHz, CDCl$_3$) δ 8.12 (d, $J = 9.4$ Hz, 2H), 6.61 (d, $J = 9.4$ Hz, 2H), 3.12 (s, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 154.14, 137.06, 126.13, 110.34, 40.35.

2-(methyl(phenyl)amino)ethanol (15): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 86% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 10/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2013, 52, 12156).

1H NMR (400 MHz, CDCl$_3$) δ 7.28 – 7.17 (m, 2H), 6.84 – 6.70 (m, 3H), 3.77 (t, $J = 5.7$ Hz, 2H), 3.43 (t, $J = 5.7$ Hz, 2H), 2.93 (s, 3H), 2.03 (br, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 150.03, 129.20, 117.25, 113.08, 60.02, 55.44, 38.75.

3-(methyl(phenyl)amino)propanenitrile (16): Following the general procedure, using 0.1 mol% Pt/C, 2.0 equiv. HCO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 55% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. Chem. Eur. J. 2014, 20, 7878).

1H NMR (400 MHz, CDCl$_3$) δ 7.39 – 7.17 (m, 2H), 6.79 (t, $J = 7.3$ Hz, 1H), 6.71 (d, $J = 8.2$ Hz, 2H), 3.70 (t, $J = 6.9$ Hz, 2H), 3.02 (s, 3H), 2.56 (t, $J = 6.9$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 147.51, 129.48, 118.41, 117.70, 112.54, 48.95, 38.63, 15.15.

4-methoxy-N,N-dimethylaniline (17): Following the general procedure, using 0.3 mol% Pt/C, 3.0 equiv. HCO$_2$H, 5.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 95% yield as a white solid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was identical with compound 10.
4-chloro-N,N-dimethylaniline (18): Following the general procedure, using 0.3 mol% Pt/C, 3.0 equiv. HCO₂H, 5.0 equiv. PhSiH₃, 1.0 mL toluene, obtained in 96% yield as white solid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2013, 52, 9568).

\[\delta \text{H NMR (400 MHz, CDCl₃) } \delta 7.16 (d, J = 9.1 Hz, 2H), 6.63 (d, J = 9.0 Hz, 2H), 2.92 (s, 6H). \]

\[\delta \text{C NMR (101 MHz, CDCl₃) } \delta 149.12, 128.78, 121.47, 113.65, 40.67. \]

N,N,2,4,6-pentamethylaniline (19): Following the general procedure, using 0.3 mol% Pt/C, 3.0 equiv. HCO₂H, 5.0 equiv. PhSiH₃, 1.0 mL toluene, obtained in 36% yield as white solid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2015, 54, 9042).

\[\delta \text{H NMR (400 MHz, CDCl₃) } \delta 6.80 (s, 2H), 2.79 (s, 6H), 2.25 (s, 6H), 2.23 (s, 3H). \]

\[\delta \text{C NMR (101 MHz, CDCl₃) } \delta 147.07, 136.95, 134.16, 129.42, 42.56, 20.67, 19.00. \]

N,N-dimethyl-2-(methylthio)aniline (20): Following the general procedure, using 0.3 mol% Pt/C, 3.0 equiv. HCO₂H, 5.0 equiv. PhSiH₃, 1.0 mL toluene, obtained in 96% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2015, 54, 9042).

\[\delta \text{H NMR (400 MHz, CDCl₃) } \delta 7.22 – 6.81 (m, 4H), 2.76 (s, 6H), 2.44 (s, 3H). \]

\[\delta \text{C NMR (101 MHz, CDCl₃) } \delta 150.88, 134.28, 124.82, 124.55, 123.89, 119.05, 44.27, 14.71. \]

N,N-dimethylbenzod[1,3]dioxol-5-amine (21): Following the general procedure, using 0.3 mol% Pt/C, 3.0 equiv. HCO₂H, 5.0 equiv. PhSiH₃, 1.0 mL toluene, obtained in 55% yield as light yellow solid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. Org. Lett. 2015, 17, 6270).

\[\delta \text{H NMR (400 MHz, CDCl₃) } \delta 6.71 (d, J = 8.5 Hz, 1H), 6.42 (d, J = 2.5 Hz, 1H), 6.17 (dd, J = 8.5, 2.5 Hz, 1H), 5.86 (s, 2H), 2.85 (s, 6H). \]
13C NMR (101 MHz, CDCl$_3$) δ 148.26, 147.19, 139.36, 108.27, 105.17, 100.56, 96.46, 41.82.

\[
\begin{array}{c}
\text{N,N-dimethylnaphthalen-1-amine (22): Following the general procedure, using 0.3 mol\% Pt/C,} \\
3.0 equiv. HCO$_2$H, 5.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 46\% yield as as light yellow solid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. Org. Lett. 2015, 17, 6270).
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 8.31 – 8.22 (m, 1H), 7.88 – 7.81 (m, 1H), 7.57 – 7.45 (m, 3H), 7.41 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.2 Hz, 1H), 2.92 (s, 6H).

13C NMR (101 MHz, CDCl$_3$) δ 150.78, 134.76, 128.74, 128.30, 125.72, 125.66, 125.10, 124.09, 122.85, 113.87, 45.19.

\[
\begin{array}{c}
\text{N-benzyl-N-methylaniline (23): Following the general procedure, using 0.3 mol\% Pt/C, 2.0 equiv.} \\
HCO$_2$H, 3.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 93\% yield as light yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. Angew. Chem. Int. Ed. 2013, 52, 12156).
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.17 (m, 7H), 6.78 – 6.31 (m, 3H), 4.44 (s, 2H), 2.93 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 148.65, 137.95, 128.13, 127.51, 125.82, 125.70, 115.51, 111.33, 55.60, 37.48.

\[
\begin{array}{c}
\text{N-(4-chlorobenzyl)-N-methylaniline (24): Following the general procedure, using 0.3 mol\% Pt/C,} \\
2.0 equiv. HCO$_2$H, 3.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 91\% yield as light yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. J. Org. Chem. 2015, 80, 5912).
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.29 – 7.12 (m, 7H), 6.72 (d, J = 7.5 Hz, 2H), 4.46 (s, 2H), 2.98 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 149.55, 137.95, 132.60, 129.28, 128.75, 128.18, 116.94, 112.54, 56.22, 38.61.

\[
\begin{array}{c}
\text{N-(4-methoxybenzyl)-N-methylaniline (25): Following the general procedure, using 0.3 mol\%}
\end{array}
\]
Pt/C, 2.0 equiv. HCO$_2$H, 3.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 92% yield as light yellow liquid (Eluent: petroleum ether/ethyl acetate = 50/1). The compound data was in agreement with the literature (Ref. *J. Org. Chem.* 2015, 80, 5912).

1H NMR (400 MHz, CDCl$_3$) δ 7.26 – 7.17 (m, 2H), 7.14 (d, $J = 8.8$ Hz, 2H), 6.84 (d, $J = 8.7$ Hz, 2H), 6.79 – 6.67 (m, 3H), 4.45 (s, 2H), 3.77 (s, 3H), 2.97 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 158.57, 149.76, 130.84, 129.13, 127.96, 116.51, 113.92, 112.50, 56.04, 55.23, 38.28.

N-benzyl-4-chloro-N-methylaniline (26): Following the general procedure, using 0.3 mol% Pt/C, 2.0 equiv. HCO$_2$H, 3.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 90% yield as light white solid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. *J. Org. Chem.* 1973, 38, 1136).

1H NMR (400 MHz, CDCl$_3$) δ 7.34 – 7.27 (m, 2H), 7.27 – 7.17 (m, 3H), 7.13 (d, $J = 9.0$ Hz, 2H), 6.64 (d, $J = 9.0$ Hz, 2H), 4.50 (s, 2H), 3.00 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 148.24, 138.45, 128.96, 128.67, 127.06, 126.68, 121.39, 113.53, 56.74, 38.84.

HRMS (ESI) calcd for C$_{15}$H$_{16}$NO$_2$ [M+H]$^+$: 242.1176, found 242.1158.

N-benzyl-N-methylbenzo[d][1,3]dioxol-5-amine (27): Following the general procedure, using 0.3 mol% Pt/C, 2.0 equiv. HCO$_2$H, 3.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 72% yield as white solid (Eluent: petroleum ether/ethyl acetate = 100/1).

1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.08 (m, 5H), 6.69 (d, $J = 8.5$ Hz, 1H), 6.42 (s, 1H), 6.17 (d, $J = 10.8$ Hz, 1H), 5.84 (s, 2H), 4.41 (s, 2H), 2.91 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 148.42, 146.28, 128.61, 128.54, 127.01, 126.93, 126.83, 108.45, 105.02, 100.62, 96.30, 58.07, 39.39.

HRMS (ESI) calcd for C$_{15}$H$_{16}$NO$_2$ [M+H]$^+$: 242.1176, found 242.1158.

N-benzyl-N2,4,6-tetramethylaniline (28): Following the general procedure, using 0.3 mol% Pt/C, 2.0 equiv. HCO$_2$H, 3.0 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 91% yield as light yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1).

1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.24 (m, 5H), 6.84 (s, 2H), 4.14 (s, 2H), 2.65 (s, 3H), 2.34 (s, 6H), 2.25 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 147.38, 140.56, 136.91, 134.47, 129.65, 128.49, 128.17, 126.71, 60.06,

\[
\text{N-}\left(\text{[1,1'-biphenyl]-4-ylmethyl}\right)\text{-2-fluoro-N-methylaniline (29): Following the general procedure, using 0.3 mol\% Pt/C, 2.0 equiv. } HCO₂H, 3.0 \text{ equiv. PhSiH₃, 1.0 mL toluene, obtained in 89\% yield as white solid (Eluent: petroleum ether/ethyl acetate = 100/1).}
\]

\[\text{^1H NMR (400 MHz, CDCl}_3\text{) } \delta 7.63 – 7.30 \text{ (m, 9H), 7.10 – 6.98 \text{ (m, 2H), 6.94 – 6.84 \text{ (m, 2H), 4.31 (s, 2H), 2.76 (s, 3H).}}\]

\[\text{^13C NMR (101 MHz, CDCl}_3\text{) } \delta 155.30 \text{ (d, } J = 244.7 \text{ Hz), 141.00, 140.14 (d, } J = 32.5 \text{ Hz), 140.10, 137.61, 128.81, 128.75, 127.24, 127.12, 127.11, 124.41 (d, } J = 3.5 \text{ Hz), 121.23 (d, } J = 7.5 \text{ Hz), 119.33 (d, } J = 2.5 \text{ Hz), 116.26 (d, } J = 20.9 \text{ Hz).}}\]

\[
\text{N-hexyl-N-methylaniline (30): Following the general procedure, using 0.3 mol\% Pt/C, 2.0 equiv. } HCO₂H, 5.0 \text{ equiv. PhSiH₃, 1.0 mL toluene, obtained in 46\% yield as light yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. J. Am. Chem. Soc. 2015, 137, 13768).}
\]

\[\text{^1H NMR (400 MHz, CDCl}_3\text{) } \delta 7.48 – 7.09 \text{ (m, 2H), 6.93 – 6.44 \text{ (m, 3H), 3.67 – 3.22 \text{ (m, 2H), 2.91 (s, 3H), 1.73 – 1.44 \text{ (m, 2H), 1.44 – 1.21 \text{ (m, 6H), 0.89 (t, } J = 6.3 \text{ Hz, 3H).}}}}\]

\[\text{^13C NMR (101 MHz, CDCl}_3\text{) } \delta 149.33, 129.13, 115.76, 112.06, 52.84, 38.28, 31.76, 26.86, 26.59, 22.69, 14.06.}\]

\[
\text{N,N'-(1,4-phenylenebis(methylene))bis(N-methylaniline) (31): Following the general procedure, using 0.5 mol\% Pt/C, 3.0 equiv. } HCO₂H, 5.0 \text{ equiv. PhSiH₃, 1.0 mL toluene, obtained in 41\% yield as white solid (Eluent: petroleum ether/ethyl acetate = 100/1). The compound data was in agreement with the literature (Ref. J. Med. Chem. 2007, 50, 5655).}
\]

\[\text{^1H NMR (400 MHz, CDCl}_3\text{) } \delta 7.26 – 7.11 \text{ (m, 8H), 6.79 – 6.61 \text{ (m, 6H), 4.49 (s, 4H), 2.99 (s, 6H).}}\]

\[\text{^13C NMR (101 MHz, CDCl}_3\text{) } \delta 149.73, 137.70, 129.24, 127.05, 116.58, 112.41, 56.44, 38.59.}\]
4. 13C-Labeling Experiments

General Procedure C: A 10 mL Schlenk tube containing a stirring bar was charged with Pt/C (0.1 mol%). The tube was then evacuated and back-filled with argon three times. Toluene (1.0 mL) was added subsequently, then substrate (0.3 mmol), 13CO$_2$H (2.0 equiv, >99% 13C) and PhSiH$_3$ (2.5 equiv) were added. The reaction mixture was heated to 80 °C (oil bath). After stirring for 15 h, the reaction mixture was cooled to room temperature, and diluted with ethyl acetate (3 mL), quenched with aqueous NaOH (3 M solution; 3 mL) carefully. The yields were analyzed by GC using n-dodecane as internal standard. To determine the isolated yield of the methylated amines, the mixture was extracted with ethyl acetate (three times) and the combined organic layers were dried over Na$_2$SO$_4$. The organic phase was filtered, concentrated, and purified by silica gel column chromatography to give the corresponding methylated amines.

1-methylindoline (32): Following the general procedure C, using 0.1 mol% Pt/C, 2.0 equiv. H13CO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL cyclohexane, obtained in 78% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 100/1).

1H NMR (400 MHz, CDCl$_3$) δ 7.20 – 7.01 (m, 2H), 6.81 – 6.62 (m, 1H), 6.65 – 6.41 (m, 1H), 3.31 (t, J = 8.2 Hz, 2H), 3.10 – 2.75 (m, 3.5H), 2.61 (s, 1.5H).

13C NMR (101 MHz, CDCl$_3$) δ 153.31, 130.33, 127.30, 124.26, 117.83, 107.30, 56.15, 36.31, 28.73.

HRMS (ESI) calcd for C$_8$H$_{13}$CN [M+H]$^+$: 135.0998, found 135.1004.

2-(methyl(phenyl)amino)ethanol (33): Following the general procedure C, using 0.1 mol% Pt/C, 1.5 equiv. H13CO$_2$H, 2.5 equiv. PhSiH$_3$, 1.0 mL toluene, obtained in 75% yield as yellow liquid (Eluent: petroleum ether/ethyl acetate = 10/1).

1H NMR (400 MHz, CDCl$_3$) δ 7.37 – 7.09 (m, 2H), 6.90 – 6.65 (m, 3H), 3.78 (t, J = 5.7 Hz, 2H), 3.44 (dd, J = 10.7, 5.5 Hz, 2H), 2.94 (d, J = 135.4 Hz, 3H), 2.02 (br, 1H).

13C NMR (101 MHz, CDCl$_3$) δ 150.02, 129.20, 117.24, 113.08, 60.01, 55.45, 38.77.

HRMS (ESI) calcd for C$_8$H$_{14}$NO [M+H]$^+$: 153.1103, found 153.1098.
5. 1H and 13C NMR spectra

1H NMR spectrum of N,N,4-trimethylaniline (2)

13C NMR spectrum of N,N,4-trimethylaniline (2)
1H NMR spectrum of \textit{N-ethyl-N-methylaniline (3)}

13C NMR spectrum of \textit{N-ethyl-N-methylaniline (3)}
1H NMR spectrum of N-isopropyl-N-methylaniline (4)

13C NMR spectrum of N-isopropyl-N-methylaniline (4)
1H NMR spectrum of N-methyl-N-phenylaniline (5)

13C NMR spectrum of N-methyl-N-phenylaniline (5)
1H NMR spectrum of 1-methylindoline (6)

13C NMR spectrum of 1-methylindoline (6)
1H NMR spectrum of 1,2-dimethylindoline (7)

13C NMR spectrum of 1,2-dimethylindoline (7)
1H NMR spectrum of 1-methyl-1,2,3,4-tetrahydroquinoline (8)

13C NMR spectrum of 1-methyl-1,2,3,4-tetrahydroquinoline (8)
1H NMR spectrum of $N,N,3$-trimethylaniline(9)

13C NMR spectrum of $N,N,3$-trimethylaniline(9)
1H NMR spectrum of 4-methoxy-N,N-dimethylaniline (10, 17)

13C NMR spectrum of 4-methoxy-N,N-dimethylaniline (10, 17)
1H NMR spectrum of 4-bromo-N,N-dimethylaniline (11)

13C NMR spectrum of 4-bromo-N,N-dimethylaniline (11)
1H NMR spectrum of 3-chloro-N,N-dimethylaniline (12)

13C NMR spectrum of 3-chloro-N,N-dimethylaniline (12)
1H NMR spectrum of ethyl 4-(dimethylamino)benzoate (13)

13C NMR spectrum of ethyl 4-(dimethylamino)benzoate (13)
1H NMR spectrum of N,N-dimethyl-4-nitroaniline (14)

13C NMR spectrum of N,N-dimethyl-4-nitroaniline (14)
1H NMR spectrum of 2-(methyl(phenyl)amino)ethanol (15)

13C NMR spectrum of 2-(methyl(phenyl)amino)ethanol (15)
1H NMR spectrum of 3-(methyl(phenyl)amino)propanenitrile (16)

13C NMR spectrum of 3-(methyl(phenyl)amino)propanenitrile (16)
1H NMR spectrum of 4-chloro-N,N-dimethylaniline (18)

13C NMR spectrum of 4-chloro-N,N-dimethylaniline (18)
1H NMR spectrum of $N,N,2,4,6$-pentamethylaniline (19)

13C NMR spectrum of $N,N,2,4,6$-pentamethylaniline (19)
1H NMR spectrum of N,N-dimethyl-2-(methylthio)aniline (20)

13C NMR spectrum of N,N-dimethyl-2-(methylthio)aniline (20)
1H NMR spectrum of N,N-dimethylbenzo[d][1,3]dioxol-5-amine (21)

13C NMR spectrum of N,N-dimethylbenzo[d][1,3]dioxol-5-amine (21)
^{1}H NMR spectrum of N,N-dimethylnaphthalen-1-amine (22)

^{13}C NMR spectrum of N,N-dimethylnaphthalen-1-amine (22)
1H NMR spectrum of N-benzyl-N-methylaniline (23)

13C NMR spectrum of N-benzyl-N-methylaniline (23)
1H NMR spectrum of N-(4-chlorobenzyl)-N-methylaniline (24)

13C NMR spectrum of N-(4-chlorobenzyl)-N-methylaniline (24)
1H NMR spectrum of N-(4-methoxybenzyl)-N-methylaniline (25)

13C NMR spectrum of N-(4-methoxybenzyl)-N-methylaniline (25)
1H NMR spectrum of N-benzyl-4-chloro-N-methylaniline (26)

13C NMR spectrum of N-benzyl-4-chloro-N-methylaniline (26)
1H NMR spectrum of N-benzyl-N-methylbenzo[\textit{d}][1,3]dioxol-5-amine (27)

13C NMR spectrum of N-benzyl-N-methylbenzo[\textit{d}][1,3]dioxol-5-amine (27)
1H NMR spectrum of N-benzyl-$N,2,4,6$-tetramethylaniline (28)

13C NMR spectrum of N-benzyl-$N,2,4,6$-tetramethylaniline (28)
1H NMR spectrum of N-([1,1'-biphenyl]-4-ylmethyl)-2-fluoro-N-methylaniline (29)

13C NMR spectrum of N-([1,1'-biphenyl]-4-ylmethyl)-2-fluoro-N-methylaniline (29)
1H NMR spectrum of N-hexyl-N-methylaniline (30)

13C NMR spectrum of N-hexyl-N-methylaniline (30)
1H NMR spectrum of N,N'-(1,4-phenylenebis(methylene))bis(N-methylaniline) (31)

13C NMR spectrum of N,N'-(1,4-phenylenebis(methylene))bis(N-methylaniline) (31)
1H NMR spectrum of 1-methylindoline (32)

13C NMR spectrum of 1-methylindoline (32)
1H NMR spectrum of 2-(methyl(phenyl)amino)ethanol (33)

13C NMR spectrum of 2-(methyl(phenyl)amino)ethanol (33)