Electronic Supplementary Information for

Alkali α-MnO$_2$/Na$_x$MnO$_2$ collaboratively catalyzed ammoxidation-Pinner tandem reaction of aldehydes

Xiuquan Jia, Jiping Ma,* Min Wang, Xiaofang Li, Jin Gao, and Jie Xu*
Contents:

1. Additional Results (pp. 3-16)

2. GC, MS and NMR Traces (pp. 17-25)
1. Additional Results

Preparation of α-MnO$_2$. α-MnO$_2$ was prepared according to the literature procedure (see below).[S1] A 100 mL aqueous solution containing 40 mmol KMnO$_4$ was added into another 100 mL aqueous solution containing 60 mmol Mn(NO$_3$)$_2$. After stirring at room temperature for 4 h, the resulting solid was collected by filtration, washed repeatedly with distilled water, and finally dried overnight in air at 60 °C and then calcined in air at 250 °C for 4 h.

Preparation of β-MnO$_2$. β-MnO$_2$ was prepared according to the literature procedure (see below).[S2] A 60 mL aqueous solution containing stoichiometric amount of MnSO$_4$ (18 mmol) and KMnO$_4$ (3 mmol) was loaded in a 100 mL Teflon-lined autoclave, which was sealed and maintained at 140 °C for 12 h. After naturally cooling to room temperature, the resulting solid was collected by centrifugation, washed repeatedly with distilled water, and finally dried overnight in air at 80 °C.

Preparation of δ-MnO$_2$. δ-MnO$_2$ was prepared according to the literature procedure (see below).[S3] An aqueous solution (A) was prepared by dissolving 0.04 mol of KMnO$_4$ and 1.2 mol of NaOH in 400 mL of water. Afterward, another aqueous solution (B) was prepared by dissolving 0.112 mol of MnCl$_2$·4H$_2$O in 400 mL of water. Solution B was added dropwise to solution A with vigorous stirring in an ice bath. The resulting precipitate was statically aged at room temperature for 1 day and then washed and dried at 90 °C.

Preparation of OMS-2. OMS-2 was prepared according to the literature
procedure (see below).[S4] KMnO$_4$ (5.89 g) in water (100 mL) was added to a solution of MnSO$_4$·H$_2$O (8.8 g) in water (30 mL) and conc. HNO$_3$ (3 mL). The solution was refluxed at 100 °C for 24 h. Then, the dark brown solid was filtered off, washed with a large amount of water (ca. 3 L), and dried at 120 °C to afford 8.2 g of OMS-2.

Preparation of Na$_x$MnO$_2$. Na$_x$MnO$_2$ was prepared according to the literature procedure with some modification (see below).[S5] A mixture of 10 mmol Na$_2$CO$_3$ and 30 mmol MnCO$_3$ was heated at 1000 °C for 15 h, followed by naturally cooling to room temperature.

\[\text{[S1]} \text{ E. Schleitzer (Ed.), Gmelin Handbook of Inorganic Chemistry 8th Edition} \]
\[\text{(Manganese), Verlag Chemie GmbH, Weinheim/Bergstrasse, 1973.}\]
\[\text{[S3]} \text{ O. Ghodbane, J.-L. Pascal, and F. Favier, } \textit{ACS Appl. Mater. Interfaces.} \textbf{2009}, \textit{1}, 1130.\]
Figure S1 XRD patterns of α-MnO$_2$.

Figure S2 XRD patterns of β-MnO$_2$.
Figure S3 XRD patterns of γ-MnO₂.

Figure S4 XRD patterns of δ-MnO₂.
Figure S5 XRD patterns of (a) fresh and (b) used α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.
Figure S6 XRD patterns of Na$_x$MnO$_2$.

Figure S7 HRTEM image of α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.
Figure S8 XRD pattern of manganese oxide calcined at 500 °C with NaOH/Mn molar ratio of 1.2 and substituting NaMnO$_4$ for KMnO$_4$.

Figure S9 TEM images of (a) fresh and (b) used α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.
Figure S10 Catalytic conversion of furfural to methyl furan-2-carboximidate over different metal oxides. Reaction conditions: 0.5 mmol furfural, 0.1 g catalyst, 120 μL aq. NH$_3$ (3 equiv.), 5 mL MeOH, 0.5 MPa O$_2$, 30 °C, 12 h.

Table S1. Catalytic conversion of furfural at different temperatures.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>T (°C)</th>
<th>Conv. (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>> 99</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>> 99</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>> 99</td>
<td>-</td>
</tr>
</tbody>
</table>

aReaction conditions: 0.5 mmol furfural, 0.1 g α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C, 120 μL aq. NH$_3$ (3 equiv.), 5 mL MeOH, 0.5 MPa O$_2$, 12 h.
Table S2. ICP elemental analysis of α-MnO$_2$/Na$_x$MnO$_2$.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>42.9</td>
<td>70.7</td>
</tr>
<tr>
<td>Na</td>
<td>1.49</td>
<td>1.71</td>
</tr>
<tr>
<td>K</td>
<td>4.69</td>
<td>3.17</td>
</tr>
<tr>
<td>Mn</td>
<td>50.9</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Table S3. EDS elemental analysis of α-MnO$_2$/Na$_x$MnO$_2$.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>39.75</td>
<td>67.29</td>
</tr>
<tr>
<td>Na</td>
<td>2.67</td>
<td>3.15</td>
</tr>
<tr>
<td>K</td>
<td>5.83</td>
<td>4.04</td>
</tr>
<tr>
<td>Mn</td>
<td>51.75</td>
<td>25.52</td>
</tr>
</tbody>
</table>

Table S4. ICP elemental analysis of manganese oxide prepared with KMnO$_4$ + KOH.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>33.3</td>
<td>63.7</td>
</tr>
<tr>
<td>K</td>
<td>7.38</td>
<td>3.30</td>
</tr>
<tr>
<td>Mn</td>
<td>59.3</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Table S5. ICP elemental analysis of manganese oxide prepared with NaMnO$_4$ + NaOH.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>52.6</td>
<td>75.2</td>
</tr>
<tr>
<td>Na</td>
<td>8.47</td>
<td>8.46</td>
</tr>
<tr>
<td>Mn</td>
<td>39.0</td>
<td>16.3</td>
</tr>
</tbody>
</table>
Scheme S1. Catalytic conversion of 5-bromofurfural over OMS-2.

Figure S11. α-MnO₂/NaₓMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C oxidized synthesis of methyl furan-2-carboximidate from furfural. Reaction conditions: 0.5 mmol furfural, 120 μL aq. NH₃ (3 equiv.), 5 mL MeOH, 0.5 MPa N₂, 30 °C, 12 h. Note: The molar mass of α-MnO₂/NaₓMnO₂ was approximate to that of MnO₂.
Figure S12. XPS spectra of (a) fresh α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C, (b) α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C was treated with furfural and ammonia in MeOH at 30 °C under N$_2$ atmosphere for 48 h, (c) α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C in (b) was treated at 30 °C under O$_2$ atmosphere for 12 h.

Figure S13. EPR spectra of (a) fresh α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C, (b) α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C was treated with furfural and ammonia in MeOH at 30 °C under N$_2$ atmosphere for 48 h, (c) α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C in (b) was treated at 30 °C under O$_2$ atmosphere for 12 h.
Figure S14. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 250 °C.

Figure S15. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 400 °C.
Figure S16. Relationship of ln(C₀/Cₜ) and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α-MnO₂/NaₓMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 420 °C.

Figure S17. Relationship of ln(C₀/Cₜ) and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α-MnO₂/NaₓMnO₂ with NaOH/Mn molar ratio of 1.2 calcined at 450 °C.
Figure S18. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over α-MnO$_2$/Na$_x$MnO$_2$ with NaOH/Mn molar ratio of 1.2 calcined at 500 °C.

Figure S19. Relationship of $\ln(C_0/C_t)$ and reaction time t of 2-furonitrile conversion to methyl furan-2-carboximidate over Na$_x$MnO$_2$.
2. GC, MS and NMR Traces

Figure S20 GC spectrum of products from furfural (Figure 7 0.5 h in the main text).

MS: m/z (%): 95 (100) [M+], 64 (13), 44 (15), 39 (48), 32 (52)

Figure S21 Mass spectrum of aldime.
Figure S22 GC spectrum of Table S1, entry 2.

MS: m/z (%): 111 (100) [M+], 95 (96), 44 (14), 39 (27), 32 (7)

Figure S23 Mass spectrum of 4.
Figure S24 GC spectrum of Table 1, entry 3 in the main text.

MS: m/z (%): 93 (100) [M+], 64 (47), 38 (23)

Figure S25 Mass spectrum of 2.

MS: m/z (%): 125 (41) [M+], 94 (100), 81 (41), 67 (57), 39 (41)

Figure S26 Mass spectrum of 3.
Figure S27 1H NMR (DMSO-d_6) of isolated methyl furan-2-carboximidate.

Figure S28 13C NMR (DMSO-d_6) of isolated methyl furan-2-carboximidate.
Figure S29 1H NMR (DMSO-d_6) of isolated methyl 5-methylfuran-2-carboximidate (Fig. 6 entry 1).

Figure S30 13C NMR (DMSO-d_6) of isolated methyl 5-methylfuran-2-carboximidate.
Figure S31 1H NMR (DMSO-d$_6$) of isolated methyl 5-ethoxymethylfuran-2-carboximidate (Fig. 6 entry 4).

Figure S32 13C NMR (DMSO-d$_6$) of isolated methyl 5-ethoxymethylfuran-2-carboximidate.
Figure S33 1H NMR (DMSO-d$_6$) of isolated methyl 5-bromofuran-2-carboximidate (Fig.6 entry 5).

Figure S34 13C NMR (DMSO-d$_6$) of isolated methyl 5-bromofuran-2-carboximidate.
Figure S35 1H NMR (DMSO-d$_6$) of isolated methyl 5-phenylfuran-2-carboximidate (Fig.6 entry 7).

Figure S36 13C NMR (DMSO-d$_6$) of isolated methyl 5-phenylfuran-2-carboximidate.
Figure S37 1H NMR (DMSO-d_6) of isolated methyl benzofuran-2-carboximidate (Fig.6 entry 8).

Figure S38 13C NMR (DMSO-d_6) of isolated methyl benzofuran-2-carboximidate.