SUPPORTING INFORMATION

Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: reducing the gap between homogeneous and heterogeneous catalysis

M. Buaki-Sogó, a A. Vivian, a L. A. Bivona, a,b H. García, c M. Gruttadauria, b,* C. Aprile a,*

Electronic Supplementary Material (ESI) for Catalysis Science & Technology.
This journal is © The Royal Society of Chemistry 2016
Contents:

Figure S1: 1H-NMR (400 MHz, (CD$_3$)$_2$SO) spectrum of S-Imi

Figure S2: 13C-NMR (125 MHz, (CD$_3$)$_2$SO) spectrum of S-Imi

Figure S3: 1H-NMR (400 MHz, (CD$_3$)$_2$SO) spectrum of bV-Imi

Figure S4: 13C-NMR (125 MHz, (CD$_3$)$_2$SO) spectrum of bV-Imi

Figure S5: TEM image of S-Imi-NT-1

Figure S6: TEM images of bV-Imi-NT-2

Figure S7: Pore Size Distribution of raw SWCNT (a), S-Imi-NT-1 (b) and bV-Imi-NT-2 (c) catalyst obtained from the BJH desorption data

Figure S8: 1H-NMR (400 MHz) spectrum of a reaction mixture of bV-Imi-NT-2 with ECH (CDCl$_3$)

Figure S9: 1H-NMR (400 MHz) spectrum of a reaction mixture of bV-Imi-NT-2 with PO (tol-d_8)

Figure S10: 1H-NMR (400 MHz, DMSO) spectrum of a reaction mixture of bV-Imi-NT-2 with GLY

Figure S11: 13C- CP-MAS -NMR of self-condensed bV-Imi polymer

Figure S12: Nitrogen adsorption-desorption isotherms of self-condensed bV-Imi polymer

Figure S13: 1H-NMR (400 MHz, tol-d_8) spectrum of the mixture after the 1st reuse cycle of bV-Imi-NT-2 with SO (see article, Figure 5)
Figure S1: 1H-NMR (400 MHz, (CD$_3$)$_2$SO) spectrum of S-Imi

Figure S2: 13C-NMR (125 MHz, (CD$_3$)$_2$SO) spectrum of S-Imi
Figure S3: 1H-NMR (400 MHz, (CD$_3$)$_2$SO) spectrum of bV-Imi

Figure S4: 13C-NMR (125 MHz, (CD$_3$)$_2$SO) spectrum of bV-Imi
Figure S5: TEM image of S-Imi-NT-1

Figure S6: TEM images of bV-Imi-NT-2 (a) and (b).
Figure S7: Pore Size Distribution of raw SWCNT (a), S-Imi-NT-1 (b) and bV-Imi-NT-2 (c) catalyst obtained from the BJH desorption data.

Figure S8: ¹H-NMR (400 MHz) spectrum of the reaction mixture of bV-Imi-NT-2 with ECH (CDCl₃). The signals in the aromatic region are due to the presence of the biphenyl used as internal standard for GC analysis.
Figure S9: 1H-NMR (400 MHz) spectrum of the reaction mixture of bV-Imi-NT-2 with PO (tol-d$_8$). The signals in the aromatic region are partially due to the presence of the biphenyl.

Figure S10: 1H-NMR (400 MHz, DMSO) spectrum of the reaction mixture of bV-Imi-NT-2 with GLY. The signals in the aromatic region are due to the presence of the biphenyl.
Figure S11: 13C-CP-MAS-NMR of self-condensed bV-Imi polymer

* spinning side bands

Figure S12: Nitrogen adsorption-desorption isotherms of self-condensed bV-Imi polymer
Figure S13: 1H-NMR (400 MHz, tol-d$_8$) spectrum of the mixture after the 1st use of bV-Imi-NT-2 with SO (see article, Figure 5)