Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

Synthesis of cyclic organic carbonates via catalytic oxidative carboxylation of olefins in flow reactors

Ajay A Sathe[†], Anirudh M K Nambiar[§], Robert M Rioux^{*§†}

[†]Department of Chemistry and [§]Department of Chemical Engineering The Pennsylvania State University ^{*}email: rioux@engr.psu.edu.

Table of Contents

I. General information	S2
II. Effect of stirring speed on epoxidation	S2
III. Optimization of epoxidation flow reactor	S4
IV. Optimization of carboxylation flow reactor	S8
V. Procedure for sequential batch epoxidation and carboxylation of styrene	S11
VI. Experimental procedure for oxidative carboxylation	S12
VII. Procedure for Re-ICP analysis	S13
VIII. Reactor diagram and pictures	S14
IX. Reactor parts list	S16
X. Characterization data	S18
XI. ¹ H and ¹³ C NMR spectra of purified products	S20

I. General Information

All reagents were obtained from commercial vendors (TCI, Sigma-Aldrich, Alfa-Aesar) and used without purification unless noted. NMR data was collected on Bruker Avance CDPX 300 or DRX 400 MHz instruments. Spectra were referenced internally to tetramethylsilane (TMS) (CDCl₃: 0.00 ppm (¹H), 0.0 (¹³C). Gas chromatography was performed on Agilent 7890A equipped with a HP-5 column and flame ionization detector (GC-FID). The following method was used for analysis. Inlet temperature: 230 °C, carrier gas (Argon) flow rate: 5 mL/min (column), split ratio 38:1, oven program: 50 °C for 1 minute, 10 °C/min to 100 °C, hold at 100 °C for 2.5 minutes, FID temperature: 250 °C, H₂ flow rate: 30 mL/min, air flow rate: 300 mL/min, make-up flow rate: 30 mL/min. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) measurements were performed on Agilent 700 series instrument. The Re standard (100 ppm Re in 2% HNO₃) for the ICP analysis were purchased from High Purity Standards Ltd. Mass spectrometric measurements were performed at University of Illinois (Champaign, IL) and the Pennsylvania State University Proteomics and Mass Spectrometry Core Facility (University Park, PA). Standard tube fittings were purchased from Swagelok and IDEX health and science.

II. Effect of stirring speed on yield in batch reactor

In a 25 ml round bottom flask equipped with a 1/4 inch stir bar were added methyltrioxorhenium (7.5 mg, 0.03 mmol), dodecane (68 μ L, 0.3 mmol), styrene (0.345 mL, 3 mmol), 3-methylpyrazole (58 μ L, 0.72 mmol), and dichloromethane (to adjust final volume to 1.5 mL). 30% H₂O₂ (aq) solution (0.64 mL, 6 mmol) was then added to the mixture and the flask was sealed with a rubber septum. The flask was placed on a stir plate and the reaction mixture was stirred at the desired RPM for 1.5 hours at room temperature.

After 1.5 hours the stirring was stopped and approximately 0.5 mL of the organic layer was pipetted into a 2 mL vial. The crude organic layer was analyzed using GC. The styrene conversion was determined by gas chromatography. Figure S1 shows the plot for conversion as a function of stirring rate.

Figure S1. Effect of stirring speed on epoxidation of styrene using MTO and hydrogen peroxide.

III. Optimization of epoxidation flow reactor

a. Preparation of reactant solutions

In a 20 mL scintillation vial, methyltrioxorhenium, dodecane (internal standard) (10 mol%), styrene, 3-methylpyrazole and dichloromethane were added together. The quantity of reactants added depended on the variable being optimized. The mixture was stirred until the catalyst dissolved and subsequently loaded into a 5 mL gas-tight glass syringe after passing through a 0.2 μ m PTFE syringe filter. A small aliquot of the solution was analyzed using GC before the reaction. Another 5 mL glass gas tight syringe was filled with 30% H₂O₂ (aq) solution.

b. Reaction procedure and product quantification

The temperature controller was turned on and the epoxidation reactor was set to the desired temperature. After the temperature stabilized the gas tight syringes containing the styrene and H_2O_2 (aq) solutions were loaded onto syringe pumps (New Era NE-510). A 40 psi back pressure regulator from IDEX was attached to the reactor outlet. The pumps were started with their respective flow rates. After constant segmented flow was seen, the system was run for 1.5 residence times. This ensured that the system reached steady state when the reaction mixture was analyzed. For analysis, the reaction mixture was collected in a vial containing MnO_2 to quench the excess peroxide and terminate the reaction. After effervescence ceased, approximately 0.5 mL of DCM was added to the reaction mixture. The organic layer was separated from the aqueous layer using a Pasteur pipette. The crude organic layer was analyzed using GC-FID. The conversion of styrene was determined by comparing the initial and final area ratios of styrene to the internal standard (dodecane).

The conversion of styrene as a function of catalyst loading, co-catalyst loading, oxidant equivalents, residence time, concentration and temperature was studied and the data collected is presented in Figures S2-S7.

Figure S2. Effect of catalyst loading on styrene epoxidation. Temperature = 40 °C, oxidant = 5 equiv, co-catalyst = 24 mol%, residence time = 30 mins, concentration = 4M, organic flow rate = 0.32 mL/h, aqueous flow rate = 0.68 mL/h.

Figure S3. Effect of co-catalyst loading on styrene epoxidation. Temperature = 40 °C, oxidant = 5 equiv, catalyst = 1 mol%, residence time = 30 mins, concentration = 4M, organic flow rate = 0.32 mL/h, aqueous flow rate = 0.68 mL/h.

Figure S4. Effect of temperature on styrene epoxidation. Oxidant = 4.7 equiv, co-catalyst = 24 mol%, catalyst = 1 mol%, residence time = 30 mins, concentration = 2M, organic flow rate = 0.5 mL/h, aqueous flow rate = 0.5 mL/h.

Figure S5. Effect of H_2O_2 equivalents on styrene epoxidation. Temperature = 40 °C, co-catalyst = 24 mol%, catalyst = 1 mol%, residence time = 30 mins, concentration = 4M, total flow rate = 1 mL/h. Note: Oxidant equivalents were varied by changing the ratio of organic to aqueous flow rate.

Figure S6. Effect of residence time on styrene epoxidation. Temperature = 40 °C, oxidant = 5 equiv., co-catalyst = 24 mol%, catalyst = 1 mol%, concentration = 4M.

Figure S7. Effect of concentration on styrene epoxidation. Temperature = 40 °C, oxidant = 5 equiv, co-catalyst = 24 mol%, catalyst = 1 mol%, residence time = 30 mins, total flow rate = 1 mL/h. Note: Oxidant equivalents were kept constant by changing the ratio of organic to aqueous flow rate.

IV. Optimization of carboxylation flow reactor

a. Preparation of reactant solutions

In a 20 mL scintillation vial, aluminum catalyst, styrene oxide, tetrabutylammonium iodide, DCM and THF were combined. The mixture was stirred until all the solids dissolved and subsequently transferred into a 5 mL gas-tight glass syringe after passing through a $0.2 \mu m$ PTFE syringe filter.

b. Initialization of flow reactor

A syringe containing dichloromethane was loaded onto the syringe pump and the CO_2 cylinder was pressurized to 140 psi, and the Argon cylinder for the back pressure regulator (BPR) was pressurized to 100 psi. The pressure was allowed to equilibrate and the CO_2 mass flow controller was adjusted to the desired setting. The micro metering valve on the BPR was opened to maintain a slow bleed. After the pressure at the CO_2 inlet to the reactor stabilized, the temperature controllers were turned on and adjusted to the desired set point.

c. Reaction procedure and product quantification

After the temperature stabilized the syringes were replaced with those containing the reagent solution. The liquid flow rates were set to 10 mL/h until the liquid pressure just exceeded the system pressure, i.e. when flow starts. The liquid and gas flow rates were adjusted to obtain the desired residence times. After steady state was reached (2 residence times), the reaction mixture was withdrawn using the 6-way valve. Approximately 200 μ L of the sample was withdrawn and the solvent removed *in-vacuo*. The crude mixture was analyzed using ¹H NMR (in CDCl₃) and the conversion was determined by comparing the ratio of the protons of the styrene oxide to the protons of the cyclic carbonate.

The styrene oxide conversion was studied as a function of residence time (Figure S8), temperature (Figure S9) and co-catalyst loading (Figure S10).

Figure S8. Effect of residence time on conversion of styrene oxide to styrene carbonate. Temperature = 100 °C, Al catalyst loading = 2 mol%, co-catalyst (Bu_4NI) = 10 mol%, concentration = 2M, CO₂ pressure = 110 psi.

Figure S9. Effect of temperature on conversion of styrene oxide to styrene carbonate. Al catalyst loading = 2 mol%, co-catalyst (Bu_4NI) = 10 mol%, concentration = 2M, CO₂ pressure = 110 psi, residence time = 40 mins.

Figure S10. Effect of co-catalyst loading on conversion of styrene oxide to styrene carbonate. Al catalyst loading = $2 \mod \%$, concentration = 2M, CO₂ pressure = $110 \mod \%$, residence time = $40 \mod \%$.

V. Procedure for sequential batch epoxidation and carboxylation of styrene

To a 20 mL three necked flask equipped with a reflux condensor, methyltrioxorhenium (30 mg), 1,4dinitrobenzene (internal standard) (50.4 mg), olefin (12 mmol), 3-methylpyrazole (0.232 mL), and dichloromethane (to adjust final volume to 3 mL) were added together. This flask was placed in an ice bath and 6.4 mL of 30% H_2O_2 solution was added dropwise to the vial. Once the addition was complete the flask was removed from the ice bath and transferred to an oil bath set at 40 °C. The reaction was carried out for 30 minutes, after which the contents of the flask were transferred to a separating funnel. The aqueous and organic layer were separated and the organic layer was collected in a 20 mL vial.

To the vial was added the aluminum catalyst (0.124 g, 0.24 mmol), Bu_4NI (0.443g, 1.2mmol), DCM (2.4mL) and THF (0.6 mL). This was then transferred to an autoclave which was subsequently pressurized to 110 psi. The autoclave was placed in an oil bath maintained at 110 °C. After 45 minutes the autoclave was placed in an ice bath and once it cooled down to room temperature was vented.

An aliquot of the reaction mixture was withdrawn for NMR analysis in CDCl₃, which indicated a yield of 88% styrene carbonate.

VI. General procedure for the direct oxidative carboxylation of olefins

a. Preparation of reactant solutions

In a 20 mL scintillation vial, methyltrioxorhenium (30 mg), 1,4-dinitrobenzene (internal standard) (50.4 mg), olefin (12 mmol), 3-methylpyrazole (0.232 mL), and dichloromethane (to adjust final volume to 3 mL) were added together. The mixture was stirred until all the solids dissolved and subsequently transferred into a 5 mL gas tight glass syringe. Another 5 mL gas-tight glass syringe was filled with 30% H_2O_2 (aq) solution. In another 20 mL scintillation vial, the aluminum catalyst (0.124 g, 0.24 mmol), Bu_4NI (0.443g, 1.2mmol), DCM (2.4mL) and THF (0.6 mL) were combined. The mixture was stirred until all the solids were dissolved, and the solution loaded into a 5 mL gas-tight glass syringe after passing through a 0.2 µm PTFE syringe filter.

b. Initialization of flow reactor

The syringe pumps were initially loaded with syringes containing pure solvents, dichloromethane for the organic reaction streams and distilled water for the aqueous stream. All three pumps were started with an initial flow rate of 6 mL/h. The CO₂ cylinder was pressurized to 140 psi, and the Argon cylinder for the back pressure regulator (BPR) was pressurized to 100 psi. The pressure was allowed to equilibrate and the CO₂ mass flow controller was adjusted to the desired setting (1 sccm). The micro metering valve on the BPR was opened to maintain a slow bleed. After the pressure at the CO₂ inlet to the reactor stabilized, the temperature controllers were turned on and the epoxidation reactor was set to 40 °C and the carboxylation reactor was set to 100 °C.

c. Reaction procedure and product quantification

After the temperature stabilized the syringes were swapped with those containing the reagent solutions. The liquid flow rates were set to 10 mL/h until the liquid pressure reached the system pressure i.e. when flow starts. The liquid flow rates were then adjusted as follows: olefin – 0.32 mL/h; peroxide – 0.68 mL/h; and the carboxylation catalyst – 0.32 mL/h. The CO₂ flow rate was set at 1 sccm.

After steady segmented flow was seen, the system was run for 7 h. This ensures that the system is at steady-state when analyzing the reaction mixture. The reaction mixture was then withdrawn using a 6 way valve. Approximately 200 μ L of the sample was withdrawn and the solvent removed *in-vacuo*. The crude mixture was analyzed using ¹H NMR (in CDCl₃) and the yield of the reaction is determined by comparing the ratio of the protons of the internal standard (1,4-dinitrobenzene) to the protons of the cyclic carbonate.

Once the reaction was completed, the flow reactor was depressurized by turning off the gas inlets and opening the micro metering valve to vent the BPR. The product collected in the BPR was chromatographed on silica gel using ethyl acetate/hexanes on a Combiflash Rf+.

VI. Procedure for ICP analysis of Re in reactor effluent.

 $50 \ \mu\text{L}$ of reactor effluent (aqueous or organic) was taken in a 20 mL scintillation vial. It was evaporated to dryness under vacuum. To the residue was added 2 mL of conc. HNO₃ which was subsequently boiled off to digest all the Re. To this solution was added 10 mL of 2% HNO₃ solution and the resulting solution was filtered through a 0.2 μ m PTFE syringe filter. The solution was analyzed by ICP-OES to determine the concentration of the rhenium in each phase.

It was found that the Re partitioned to 56% in the aqueous and 44% in the organic phase.

VII. Reactor Setup

Figure S11. Reactor setup for oxidative carboxylation of olefins.

The oxidative carboxylation reactor was setup as shown in Figure S11. The organic solution, containing the olefin, catalyst and co-catalyst, and the aqueous peroxide solution were loaded into gastight syringes and introduced into the system using syringe pumps. The fluidic connections were made using either flat bottom or compression fittings. The streams were mixed using a T-mixer before entering the epoxidation reactor, which was made from 1/8" PTFE tubing and packed with sand. A PTFE membrane based separator was utilized to partition the aqueous and organic phases coming out of the epoxidation reactor. The aqueous phase was sent to a bulk collection vessel and the separator outlet containing the organic stream was mixed with the carboxylation catalyst solution in another T-mixer. This solution was then mixed with CO₂ gas which was introduced from a mass flow controller. The gasliquid segmented flow then entered the carboxylation reactor, made from 1/8" stainless steel tubing and packed with sand. The back pressure of the system was set by pressurizing the bulk collection vessels with Argon. The temperature of both reactors was maintained using heat tape and a PID temperature controller. Effluent sampling from the carboxylation reactor was done using a 6-way valve.

Figure S12. Reactor set-up: (1) syringe pumps, (2) check valves, (3) epoxidation reactor, (4) BPR and aqueous waste, (5) temperature controller, (6) pressure gauge, (7) BPR and product collection, (8) sampling valve, (9) carboxylation reactor, (10) membrane separator.

Figure S13: The membrane separator splitting an inlet stream of food dye (aqueous) and dichloromethane (organic) into respective components.

VIII. Reactor parts list

Figure S14. Components used for construction of the reactor set-up in Figure S12. For details on vendors and part numbers, see Table S1.

Table S1: Oxidative carboxylation reactor parts list														
Item	Vendor Part # Part description New Fra Pump Systems Inc. NE-510 Syringe pump													
А	New Era Pump Systems Inc.	NE-510	Syringe pump											
В	Hamilton	81520	5 mL glass syringe											
С	IDEX H&S	P-628/P-678	Luer adapter											
D	IDEX H&S	P-287	Super flangeless nut for 1/16" tubing											
Е	IDEX H&S	P-250	Super flangeless ferrule for 1/16" tubing											
F	Zeus tubing	IWTT-063-C	1/16" PTFE tubing (1/32" ID)											
G	IDEX H&S	CV-3330	Check valve											
Н	IDEX H&S	P-632	Mixing tee											
Ι	Swagelok	SS-400-6-1	Steel reducing union, 1/4" x 1/16"											
J	Sigma Aldrich	18421	Glass wool											
Κ	Saint Gobain	TSPF35-0250-062-	1/4" PTFE tubing (1/8" ID)											
		25	(epoxidation reactor)											
L	Fischer Scientific	S23-3	Sand for packed bed reactor											
Μ	Fischer Scientific	S25-500	Sand for heating reactor											
Ν	McMaster Carr		Aluminum tube for heating reactor											
0	N/A	N/A	Heat tape											
Р	Auber Instruments	WS-1510DPM	PID temperature controller &											
-			thermocouple											
Q	Zaiput Flow Technologies	SEP10	Membrane Separator with 0.2 μ m											
р	Corrected by	SS 200 C 1	membrane from sterlitech											
K		SS-200-6-1	Steel reducing union, 1/8 x 1/16											
З	PSU ChE Machine Shop	N/A	Autoclave											
l U	Swagelok	55-200-6	Steel union, $1/8$											
U	McMaster Carr	5239K24	1/8" PIFE tubing (1/16" ID)											
V	IDEX H&S	P-445	Micro metering valve											
W	Hoke	7155G2Y	Shut off valve											
Х	McMaster Carr	2227T44	Pressure gauge											
Y	Tylan	FC-260V/ AA9304091	MFC (0-10 sccm CO ₂)											
Ζ	Air Gas		Gas regulators											
AA	Swagelok	89785K824	1/4" steel tubing (0.18" ID)											
			(carboxylation reactor)											
BB	IDEX H&S	V-540	6-way valve											

IX. Characterization Data

(a) 4-phenyl-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.47-7.26 (m, 5H), 5.70 (t, 1H, *J* = 8 Hz), 4.82 (t, 1H, *J* = 8.4 Hz), 4.35 (t, 1H, *J* = 8 Hz); ¹³C (CDCl₃, 75 MHz) δ = 154.9, 135.8, 129.7, 129.2, 125.9, 78.0, 71.2. HRMS calculated for C₉H₁₂NO₃ [M+NH₄]⁺: 182.0817. Found: 182.0831. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.35

(b) 4-(4-fluorophenyl)-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.40-7.35 (m, 2H), 7.15-7.09 (m, 2H), 5.72 (t, 1H, *J* = 8 Hz), 4.84 (t, 1H, *J* = 8.5 Hz), 4.36 (t, 1H, *J* = 8.3 Hz); ¹³C (CDCl₃, 75 MHz) δ = 165.0, 161.7, 154.8, 131.7, 131.7, 128.2, 128.1, 116.4, 116.1, 77.6, 71.2. HRMS: calculated for C₉H₇O₃F: 182.0379. Found: 182.0370. Rf (silica gel with 30% EtOAc in Hexanes as eluent): 0.28

(c) 4-(naphthalen-2-yl)-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.87-7.77 (m, 4H), 7.52-7.49 (m, 2H), 7.37 (dd, 1H, *J* = 8.5, 1.6 Hz), 5.78 (t, 1H, *J* = 8 Hz), 4.81 (t, 1H, *J* = 9 Hz), 4.38 (t, 1H, *J* = 9 Hz); ¹³C (CDCl₃, 75 MHz) δ = 155.0, 133.6, 132.9, 132.8, 129.4, 128.1, 127.8, 127.1, 126.9, 125.9, 122.5, 78.2, 71.0. HRMS calculated for C₁₃H₁₄NO₃ [M+NH₄]⁺: 232.0974. Found: 232.0955. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.28

(d) 4-(4-chlorophenyl)-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.40 (d, 2H, *J* = 9 Hz), 7.32 (d, 2H, *J* = 9 Hz), 5.71 (t, 1H, *J* = 9 Hz), 4.85 (t, 1H, *J* = 9 Hz), 4.33 (t, 1H, *J* = 9 Hz); ¹³C (CDCl₃, 75 MHz) δ = 154.8, 135.5, 134.4, 129.4, 127.5, 77.3, 71.0. HRMS: calculated for C₉H₇O₃Cl: 198.0084. Found: 198.0074.. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.36

(e) 4-(3-chlorophenyl)-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.39-7.37 (m, 3H), 7.27-7.24 (m, 1H), 5.70 (t, 1H, *J* = 7.9 Hz), 4.86 (t, 1H, *J* = 8.5 Hz), 4.34 (t, 1H, *J* = 8.2 Hz); ¹³C (CDCl₃, 75 MHz) δ = 154.6, 137.9, 135.1, 130.6, 129.8, 126.0, 123.9, 77.0, 71.0. HRMS: calculated for C₉H₇O₃Cl: 198.0084. Found: 198.0074. Rf (silica gel with 30% EtOAc in Hexanes as eluent): 0.42

(f) 4-(2-chlorophenyl)-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.50-7.47 (m, 1H), 7.41-7.33 (m, 3H), 6.00 (t, 1H, *J* = 9 Hz), 4.99 (t, 1H, *J* = 8.5 Hz), 4.27 (t, 1H, *J* = 8 Hz); ¹³C (CDCl₃, 75 MHz) δ = 154.7, 134.5, 131.1, 130.4, 129.9, 127.6, 126.2, 75.0, 70.4. HRMS calculated for C₉H₁₁ClNO₃ [M+NH₄]⁺: 216.0427. Found: 216.0436. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.38

o (g) 4-(4-(tert-butyl)phenyl)-1,3-dioxolan-2-one

¹H (CDCl₃, 400 MHz) δ = 7.45 (d, 2H, *J* = 8.4 Hz), 7.31 (d, 2H, *J* = 8 Hz), 5.66 (t, 1H, *J* = 8 Hz), 4.77 (t, 1H, *J* = 8.4 Hz), 4.33 (t, 1H, *J* = 8 Hz), 1.31 (s, 9H); ¹³C (CDCl₃, 75 MHz) δ = 155.0, 152.9, 132.8, 126.1, 125.9, 78.0, 71.1, 34.7, 31.2. HRMS calculated for C₁₃H₂₀NO₃ [M+NH₄]⁺: 238.1443. Found: 238.1438. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.45

(h) 4-phenethyl-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 7.29-7.13 (m, 5H), 4.61-4.57 (m, 1H), 4.39 (t, 1H, *J* = 9 Hz), 3.97 (t, 1H, *J* = 9 Hz), 2.76-2.63 (m, 2H), 2.03-1.88 (m, 2H); ¹³C (CDCl₃, 75 MHz) δ = 155.1, 140.0, 128.6, 128.4, 126.4, 76.2, 69.3, 35.3, 30.7. HRMS calculated for C₁₁H₁₆NO₃ [M+NH₄]⁺: 210.1130. Found: 210.1132. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.30

(i) 4-pentyl-1,3-dioxolan-2-one

¹H (CDCl₃, 300 MHz) δ = 4.74-4.70 (m, 1H), 4.57 (t, 1H, *J* = 9 Hz), 4.10 (t, 1H, *J* = 9 Hz), 1.82-1.65 (m, 2H), 1.48-1.30 (m, 8H), 0.89 (t, 3H); ¹³C (CDCl₃, 75 MHz) δ = 155.2, 69.5, 33.9, 31.5, 28.8, 24.4, 22.5, 14.0. HRMS calculated for C₈H₁₈NO₃ [M+NH₄]⁺: 176.1287. Found: 176.1269. R_f (silica gel with 30% EtOAc in Hexanes as eluent): 0.31

(j) 4-(2-oxo-1,3-dioxolan-4-yl)butanenitrile

¹H (CDCl₃, 300 MHz) δ = 4.80 (t, 1H, *J* = 6 Hz), 4.61 (t, 1H, *J* = 8.2 Hz), 4.14 (t, 1H, *J* = 8 Hz), 2.49-2.45 (m, 2H), 1.91-1.75 (m, 4H); ¹³C (CDCl₃, 75 MHz) δ = 155.0, 119.6, 76.4, 69.3, 32.5, 20.9, 16.6. HRMS calculated for C₇H₁₃N₂O₃ [M+NH₄]⁺: 173.0926. Found: 173.0919. R_f (silica gel with 50% EtOAc in Hexanes as eluent): 0.23

ſ

Current Data Parameters NAME styrenecarb EXPNO 8 PPOCNO 1 F2 - Acquisition Parameters Date2015/207 Time 17.49 INSTRUM spect PADBHO 5 mm QND H1/1 PULPROG 29030 TD 55536 SOLVENT COC13 NS 280619 H2 AG 1.7433076 sec AG 1.7533076 sec AG 1.753076 sec AG 1.7533076 sec AG 1.753307777777777777777777777777777777777	D11 0.0300000 sec D12 0.0300000 sec ====== CHANNEL f1 ==== CHANNEL f1 NUC1 13C P1 5.25 usec PL1 5.25 usec PL1 5.25 usec PL1 5.4106357 MHz PL1 75.4106357 MHz PL1 75.4106357 MHz PL1 75.4106357 MHz PL1 75.4106357 MHz PL1 70.048 PL2 0.000 d8 PL13 19.70 d8 PL13 19.70 d8 PL13 19.70 d8 PL3 19.70 d8 PL3 19.70 d8	F2 - Processing parameters S1 32768 S5 75.4023753 MDW EM S5 75.4023753 MDW EM S5 75.4023753 MDW EM S53 1.00 B 1.00 C 1.40 D 1.40 D 1.40 D 20.000 C 2.30.000 F1 1342.54 F2 -754.02 F2 -754.02 PPMCM 9.42.02	117CM 204, 26243 17/10
-0.002			
		- - - - -	
78.024 76.705 76.706		75	0 0
		- 100 -	
135.821		125	
929. 929		120	
	on aù	175	
		200	
wdd			

.

-0.001 -0	HZCM
200.0- 251.11 252.151 261.1	T
367.161 367.161	С
369:161 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 861:77 <tr< td=""><td></td></tr<>	
S27.1E1 S30.1E1 S10.17 <	Ŋ.
327.1E1 360.1E1 567.35 567.1.17 567.36 567.37 567.1.17 567.36 567.37 567.36 567.37 567.36 567.37 567.36 567.37 567.36 567.37 567.37 567.36 567.36 567.37 567.36 567.36 567.37 567.36	nc
367.1E1 297.1E1 291.10 2131.682 <t< td=""><td></td></t<>	
27.161 282.128 116.143 128.128 128.124 116.143 128.128 128.124 128.124	C/
257.1E1 131.682 128.124 128.124 128.124 128.124	00 S21
257.1E1 282.128 288.238 2128.124 258.124	-
-131 ZS2	TCJ
×69.131	2
266° Þ91	
e Sector	
	200
L	1

.

•

1D NMA plot parameters CX 20.00 cm F1P 230.000 ppm F1 17342.55 H2 -10.000 ppm F2P -10.000 ppm F2 -75.02 H2 PPMCM 12.00000 ppm/cm HZCM 904.82861 Hz/cm 4 18796.992 Hz 0.288619 Hz 1.7433075 sec 3640. usec 6.00 usec 300.0 K 2.0000000 sec 0.03000000 sec

 F2 - Acquisition Parameters

 Date______20151128

 Time
 14.45

 INSTRUM
 spect

 PADBHO
 5 mm GNP 1H/1

 PULPROG
 29930

 SOLVENT
 CDC13

 NS
 165

 SOLVENT
 CDC13

 NS
 16796.992

 DS
 0.288619

 AQ
 1.7433075

 AG
 1.7433075

 C
 6.00 usec

 DM
 26.500 usec

 DM
 26.500 usec

 D11
 0.0000000 sec

 D12
 0.00002000 sec

 ==== CHANNEL F2 ====== waltz16 11 15.00 usec 19.70 dB 19.70 dB 19.70 dB F2 - Processing parameters SI 32768 32768 MDW EM MDW EM SSB 0 LB 1.00 Hz 68 0 C 1.40 - CHANNEL f1 ===== 13C 5.25 usec -6.00 dB 75.4106357 MHz Current Data Parameters NAME nap_carb EXPNO 3 PRDCNO 1 CPDPRG2 CPDPRG2 NUC2 PL2 PL2 PL13 PL13 SF02 SF02 NUC1 P1 PL1 SF01 -----1 900.0 -0 52 20 920.17 -202.97 -15 77.135 299°22 -071.87 -S23 100 -125.455 -155.850 E\$6.943 060.751-408.7S1-125 901.851 -159.443 732.847 135.935 978.551 150 686.421-0 0 175 200 mdd

1D NMH plot parameters CX 20.00 cm F1P 20.000 ppm F1 18800.59 H2 F2P -10.000 ppm F2 -55.02 H2 -10.000 ppm/Cm HZCM 980.23083 H2/Cm cHANNEL F2 ====== waltz16 i15.00 usec 0.00 d8 19.70 d8 19.70 d8 299.8711995 MHz 19795.992 Hz 0.286819 Hz 1.7433076 sec 4096 26.600 usec 5.00 usec 300.0 K 2.0000000 sec 0.03000000 sec F2 - Acquisition Parameters Date_______15.31 Time 55.31 INSTRUM spect PROBNO 5 mm QNP 1H/1 PULPROG 29930 TD 65536 SOLVENT 00C13 NS 102 DS 4002003 SWH 18796.992 Hz SWH 18796.992 Hz SWH 18796.992 Hz FIDRES 0.286619 Hz FIDRES 0.286610 Hz C 0.00 usec DE 6.00 usec DI 2.00000000 sec D11 0.0000000 sec = CHANNEL f1 ====== 13C 5.25 usec -6.00 dB 75.4106357 MHz F2 - Processing parameters SI 32768 SF 75.4023753 MHz MDW EM SSB 0 LB 1.00 Hz GB 1.00 Hz GB 7.40 Current Data Parameters NAME 4_C1_stycarbo EXPNO 2 PROCNO 1 CPDPHG2 NUC2 PCPD2 PL 2 PL 12 PL 13 SF02 SF02 ****** -----NUC1 P1 PL1 SF01 100.0- -----0 20 640.17 -218.37 -- 77.240 SEE.77 -999'22 -100 S25 894.751-+159.354 685.951 967.361-150 991.451-(p) 200 \overline{O} mdd

wdd

.

	Lers Hz sec usec	usec k sec sec sec sec usec d b MHz	usec dB dB MHz	ars MHz Hz	cm ppm Hz ppm Hz Hz/cm Hz/cm
Data Parameters 3_C1_sty_OC 2 1	uuisition Paramet 20151116 18.32 spect 5 mm ONP 1H/1 290992 65536 CDC13 1024 1.7433076 1.7433076 1.7433076 2.2660 2.2600 2.2600	6.00 2.00000000 0.03000000 0.03000000 0.00002000 0.00002000 130 5.25 5.25 5.25 5.25 75,4105357	<pre>center f2 waltz16 waltz16 waltz16 0.00 19.70 299.8711995</pre>	525510 parameti 32768 75.4023748 EM 1.00 1.00 1.40	alot parameters 20.00 230.000 17342.54 -10.000 -754.02 12.00000 904.82849
Current NAME EXPNO PROCNO	F2 - Acc Date _ Time PROBHD PULPROG TD SOLVENT SOLVENT SOLVENT SOLVENT AG AG	DE TE 011 012 012 NUC1 PL1 FL1 SF01	CPOPAG2 CPOPAG2 PCPD2 PL2 PL12 PL13 FL13 SF02	F2 - Pro SSF WDW SSB CB CB PC	10 NMR F CX F1P F1 F2P F2P F2P F2CM H2CM

-

ii.

1D NWR plot parameters CX 20.00 cm F1P 230.000 ppm F1 17342.54 H2 F2 -10.000 ppm F2 -754.00 ppm F2 -754.00 ppm/cm HZCM 904.82849 Hz/cm 18796-992 Hz 0.286819 Hz 1.7433076 sec 1.7433075 sec 50.0 usec 6.00 usec 300.0 K 2.0000000 sec 0.0300000 sec 0.0300000 sec === CHANNEL f2 ====== waltz16 115.00 Usec 0.00 dB 19.70 dB 19.70 dB 299.8711995 MHz F2 - Acquisition Parameters Date______20151128 Time 14.27 INSTRUM Spect PROBHD 5 mm GNP 1H/1 PULPROG 299930 TD 55535 SOLVENT CDC13 CHANNEL f1 =====
 13C
 5.25 usec
 6.00 dB
 75.4106357 MHz F2 - Processing parameters SI 32768 SF 75.4023731 MHz MOW EM SSB 0 LB 1.00 Hz 68 0 PC 1.40 Current Data Parameters NAME 2_C1_Sty_carb EXPNO 2 PROCNO 1 CPOPAG2 NUC2 PCPD2 PL2 PL12 PL13 PL13 SF02 SF02 NUC1 P1 PL1 SF01 ----E00'0- --0 -22 -22 628.07 -74.997 -52 S00.77 -064.77 -77.857 -S28 100 126.158 -127.599 125 129.858 065.051-990.1E1-134.471 150 \$89'\$GI-CI (f) 175 200 bpm

.

.

S30

Current Data P NAME 4_tb EXPNO PROCNO	F2 - Acquisiti Date_ Time INSTRUM PROBHD 5 mm	PULPHOG TD SOLVENT NS DS SWH FIDRES	AG BG DF DF D1 11 01 12 01	NUC1 P1 P1	sru1 C ========= C cpoprac2 NUC2 PCD2 PL13 PL13 PL13 SF02 29	F2 - Processin SI MDW SSB LB G8 G8 PC	10 NMR plot pa CX F1 F1 F2P F2P F2P F2CM H2CM
100.	0						0
999. 251.	ре ————————————————————————————————————						25
737. 801.	۲۷ ۹۷						75 ' ' ' 50
050. 013. 201.							31 100
997. 720. 102.	152						125
7£0. 228.	125						150
		070	(6)			×	175
	¢	K	t-Bu				200
wc	bt						- wdd

.

1D NMA plot parameters CX 20.00 cm F1P 230.000 ppm F1 17342.55 Hz -10.000 ppm F2 -1634.02 Hz PPMCM 12.00000 ppm/cm HZCM 904.82861 Hz/cm 18796-992 Hz 0.286819 Hz 1.7433076 sec 1024 26.600 usec 6.00 usec 300.0 K 2.0000000 sec 0.0300000 sec 0.0300000 sec CHANNEL F1 ======
 13C
 5.25 usec
 6.00 dB
 75.4106357 MHz F2 - Processing parameters SI 32768 SF 75,4023822 MHz MOW EM SSB 0 LB 1.00 Hz GB 1.00 Hz GB 7.40 Current Data Parameters NAME 4_Ph_But_Carb EXPNO 2 PAOCNO 1 NUC1 P1 PL1 SF01 100.0 -----0 -92 69.05 ----9EE'SE -----22 - 69.269 - 76.232 15 76.96 Þ6E'ZZ -158.77 -S33 100 125 -126.363 178.851--128.600 Þ78.974 150 990.951-(L 175 문 200 bpm wdd

1D NMR plot parameters CX 20.00 cm F1P 11.000 ppm F1 3298.57 Hz -1.000 ppm F2 -1.000 ppm F2 -299.87 Hz PPMCM 0.60000 ppm/cm H2CM 179.92200 Hz/cm -= CHANNEL f1 ====== 1H 12.10 Usec 0.00 dB 299.6718518 MHz 50.8 81.000 usec 5.00 usec 300.0 K 1.00000000 sec 20151130 20151130 13.54 spect spect 2930 65536 CDC13 16 6172.839 Hz 0.094190 Hz 5.3084660 sec F2 - Processing parameters S1 32768° SF 299.8699963 MHz WDW EM 0 SSB 0.30 Hz GB 0.30 Hz GB 71.00 F2 - Acquisition Parameters Date____20151130 299.8699963 MHz Current Data Parameters NAME octene_carb octene_carb n H INSTRUM PROBHD PROCND EXPNO -----Time NUC1 P1 PL1 SF01

1D NMR plot parameters CX 20.00 cm F1P 20.000 ppm F1 17342.54 H2 F2P -10.000 ppm F2 -154.02 H2 PPMCM 12.00000 ppm/cm HZCM 904.82837 H2/cm = CHANNEL f2 ====== maltz16 * 115.00 usec 0.00 dB 19.70 dB 19.70 dB 18796.992 Hz 0.286819 Hz 1.7433076 sec 26.600 usec 6.00 usec 300.0 K 2.0000000 sec 0.03000000 sec CHANNEL f1 ======
 13C
 5.25 usec
 6.00 dB
 75.4106357 MHz F2 - Acquisition Parameters Date______20151130 Time 20151130 Time 14.03 INSTRUM spect PROBNO 5 mm GNP 14/1 PULPROG 29930 TID 65536 SOLVENT CDC13 NS 0108 DS 41 SWH 18796.992 Hz SWH 18796.992 Hz AQ 1.7433075 sec F2 - Processing parameters SI 32768 SF 75.4023690 MHz MDW EM SSB 0 LB 11.00 Hz GB 11.00 Hz GB 71.40 Current Data Parameters NAME octene_carb EXPNO 2 PROCNO 1 . CPDPRG2 NUC2 PCPD2 PL2 PL2 PL13 PL13 SF02 NUC1 P1 PL1 SF01 000.0 -0 - 14.025 - 55.489 54.354 52 28.824 31.544 678.EE -50 Þ8þ.63 — GG7.87 -22 181.77 -909'77 -S35 100 125 150 815.238-0 0 Ξ 175 200 ppm wdd

10 NMR plot parameters CX 20.00 cm F1P 11.000 ppm F1 3298.57 Hz -1.000 ppm F2P -1.000 ppm F2 -299.87 Hz PPMCM 0.60000 ppm/cm H2CM 179.9219B Hz/cm 25.4 81.000 usec 6.00 usec 300.0 K 1.0000000 sec = CHANNEL f1 ====== 1H 12.10 usec 0.00 dB 299.8718518 MHz 9.56 spect 5 mm GNP 1H/1 2930 65536 CDC13 16 6172.839 Hz 0.094190 Hz 5.3084660 sec F2 - Processing parameters SI 32768 SF 299.8699575 MHz WDW no SSB 0 LB 0.00 Hz GB 0.00 Hz GB 7.00 F2 - Acquisition Parameters Current Data Parameters NAME 6_CN_hex_carb œ 20151207 1 **NSTRUM** PULPROG TD SOLVENT NS SWH SSWH FIURES AG DM DE DE D1 D1 рновно Date_ PROCNO EXPNO Time NUC1 P1 PL1 SF01

9

Ś

Current Data Parameters	EXPNO OLUVIEX LOTO	F2 - Acquisition Parameters	Date20151207 Time10.00	INSTRUM Spect	PROBHD 5 mm GNP 1H/1 PULPROG Zgpg30	TD 65536 SOLVENT CDC13	NS 30	US 4 SWH 18796.992 Hz	FIDRES 0.286819 Hz	AG 1.7433076 SEC RG 1024	DW 26.600 usec	DE 6.00 usec TF 300 0 k	D1 2.0000000 Sec	D11 0.03000000 Sec	U12 0.0002000 Sec	 D1 5 55 1150	PL1 -6.00 dB	SF01 75.4106357 MHz	*********** CHANNEL f2 **********	CPDPRG2 waltz16	NUC2 1H	PLPUC 0 00 CLT SUCCE	PL12 19.70 dB	PL13 19,70 dB	SHM CREETERS SUIS	F2 - Processing parameters si	SF 75.4023657 MHz	MUW MOM	LB 1.00 Hz	58 0 PC 1.40	1D NWA plot parameters	CX 20.00 Cm F1P 230.000 ppm F1 17342.54 Hz	F2P -10.000 ppm F2 -754.02 Hz	PPMCM 12.00000 ppm/cm H2CM 904.82837 H2/cm
	879	.05			-																											hum by confirments when a series		- 0
	892	.SE																														and the second		
	327 243 243	. 69 . 87 . 77 . 77			-																											and the second		75 50
	201	82																													-			100 S37
	095	. 611																														Lunascenture and a second		125
	044	. 251						2		0																		-				according to the second second		150
					Y			1	10-	$\langle \langle \rangle$	> ; >	()) ())																				والمراجعة والمرجوعة مستحر ومراد مراجع	1 1 1	10 17E
	10	hh								NC	>																					معاديا بالمراجع المراجع المراجع المراجع المراجع المراجع		- 50 - 50

.

•