Supporting Information:

Structurally versatile phosphine and amine donors constructed from N-heterocyclic olefin units

Nathan R. Paisley, Melanie W. Lui, Robert McDonald, Michael J. Ferguson, Eric Rivard*

Contents

Figure S1. ¹ H NMR spectrum of (IPr=CH) $P^{i}Pr_{2}$ (2)	S3
Figure S2. ${}^{13}C{}^{1}H$ DEPTQ NMR spectrum of (IPr=CH)P ^{<i>i</i>} Pr ₂ (2)	S4
Figure S3. ${}^{31}P{}^{1}H$ NMR spectrum of (IPr=CH)P ^{<i>i</i>} Pr ₂ (2)	S5
Figure S4. ¹ H NMR spectrum of (IPr=CH)PPh ₂ (3)	S6
Figure S5. ¹³ C{ ¹ H} DEPTQ NMR spectrum of (IPr=CH)PPh ₂ (3)	S7
Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum of (IPr=CH)PPh ₂ (3)	S 8
Figure S7. ¹ H NMR spectrum of (IPr=CH)NMe ₂ (4)	S9
Figure S8. $^{13}C{^{1}H}$ DEPTQ NMR spectrum of (IPr=CH)NMe ₂ (4)	S10
Figure S9. ¹ H NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot BH_{3}$ (5)	S11
Figure S10. ¹¹ B{ ¹ H} NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot BH_{3}$ (5)	S12
Figure S11. ¹³ C{ ¹ H} DEPTQ NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot BH_{3}$ (5)	S13
Figure S12. ³¹ P{ ¹ H} NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot BH_{3}$ (5)	S14
Figure S13. ¹ H NMR spectrum of (IPr=CH)Ph ₂ P•BH ₃ (6)	S15
Figure S14. ¹¹ B $\{^{1}H\}$ NMR spectrum of (IPr=CH)Ph ₂ P•BH ₃ (6)	S16
Figure S15. ¹³ C $\{^{1}H\}$ DEPTQ NMR spectrum of (IPr=CH)Ph ₂ P•BH ₃ (6)	S17
Figure S16. ³¹ P{ ¹ H} NMR spectrum of (IPr=CH)Ph ₂ P•BH ₃ (6)	S18
Figure S17 . ¹ H NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot PdCl(cinnamyl)$ (7)	S19
Figure S18 . ³¹ P{ ¹ H} NMR spectrum of (IPr=CH) i Pr ₂ P•PdCl(cinnamyl) (7)	S20
Figure S19. ¹ H NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot AuCl$ (8)	S21
Figure S20. ¹³ C{ ¹ H} NMR spectrum of (IPr=CH) ^{<i>i</i>} Pr ₂ P•AuCl (8)	S22
Figure S21. ³¹ P{ ¹ H} NMR spectrum of (IPr=CH) ^{<i>i</i>} Pr ₂ P•AuCl (8)	S23
Figure S22. ¹ H NMR spectrum of (IPr=CH)Ph ₂ P•AuCl (9)	S24

Figure S23. ¹³ C $\{^{1}H\}$ NMR spectrum of (IPr=CH)Ph ₂ P•AuCl (9)	S25
Figure S24. ${}^{31}P{}^{1}H$ NMR spectrum of (IPr=CH)Ph ₂ P•AuCl (9)	S26
Figure S25. ¹ H NMR spectrum of [IPr-CH ₂ -PPh ₂ •AuAr ^F][BAr ^F ₄] (10)	S27
Figure S26. ¹¹ B{ ¹ H} NMR spectrum of [IPr-CH ₂ -PPh ₂ •AuAr ^F][BAr ^F ₄] (10)	S28
Figure S27. ¹³ C{ ¹ H} NMR spectrum of [IPr-CH ₂ -PPh ₂ •AuAr ^F][BAr ^F ₄] (10)	S29
Figure S28. ¹⁹ F NMR spectrum of [IPr-CH ₂ -PPh ₂ •AuAr ^F][BAr ^F ₄] (10)	S30
Figure S29. ³¹ P{ ¹ H} NMR spectrum of [IPr-CH ₂ -PPh ₂ •AuAr ^F][BAr ^F ₄] (10)	S31
Figure S30. ¹ H NMR spectrum of (IPr=CH)NMe ₂ •AuCl (11)	S32
Figure S31. ¹³ C{ ¹ H} NMR spectrum of (IPr=CH)NMe ₂ •AuCl (11)	S33
Figure S32. Molecular structure of (IPr=CH)NMe ₂ •AuCl (11)	S34
Table S1. Crystallographic Experimental Details for 11.	S35

Figure S1. ¹H NMR spectrum of (IPr=CH) P^i Pr₂ (**2**) in C₆D₆.

Figure S2. ¹³C{¹H} DEPTQ NMR spectrum of (IPr=CH)P^{*i*}Pr₂ (2) in C₆D₆.

Figure S3. ${}^{31}P{}^{1}H$ NMR spectrum of (IPr=CH)PⁱPr₂ (2) in C₆D₆.

161.839 MHz P31[H1] 1D in c6d6

Figure S4. ¹H NMR spectrum of (IPr=CH)PPh₂ (**3**) in C_6D_6 .

Figure S5. ¹³C{¹H} DEPTQ NMR spectrum of (IPr=CH)PPh₂ (3) in C_6D_6 .

Figure S6. ³¹P{¹H} NMR spectrum of (IPr=CH)PPh₂ (3) in C_6D_6 .

Figure S7. ¹H NMR spectrum of (IPr=CH)NMe₂ (4) in C₆D₆.

Figure S8. ${}^{13}C{}^{1}H$ DEPTQ NMR spectrum of (IPr=CH)NMe₂ (4) in C₆D₆.

Figure S10. ¹¹B{¹H} NMR spectrum of (IPr=CH)^{*i*}Pr₂P•BH₃ (5) in C₆D₆.

 $\mathsf{C}_6\mathsf{D}_6$

Figure S12. ³¹P{¹H} NMR spectrum of (IPr=CH)^{*i*}Pr₂P•BH₃ (5) in C₆D₆.

Figure S13. ¹H NMR spectrum of (IPr=CH)Ph₂P•BH₃ (6) in C_6D_6 .

Figure S14. ¹¹B $\{^{1}H\}$ NMR spectrum of (IPr=CH)Ph₂P•BH₃ (6) in C₆D₆.

NP-02-55_tolrecrysolids 128.269 MHz B11[H1] 1D in c6d6, temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

Figure S15. ¹³C $\{^{1}H\}$ DEPTQ NMR spectrum of (IPr=CH)Ph₂P•BH₃ (6) in C₆D₆.

Figure S16. ³¹P{¹H} NMR spectrum of (IPr=CH)Ph₂P•BH₃ (6) in C_6D_6 .

NP-02-55_tolrecrysolids 161.839 MHz P31[H1] 1D in c6d6

Figure S18. ³¹P{¹H} NMR spectrum of (IPr=CH)^{*i*}Pr₂P•PdCl(cinnamyl) (7) in C₆D₆.

* impurity at -17.4 ppm is free ligand (IPr=CH) $P^{i}Pr_{2}(2)$

Figure S19. ¹H NMR spectrum of $(IPr=CH)^{i}Pr_{2}P \cdot AuCl$ (8) in C₆D₆.

Figure S21. ³¹P{¹H} NMR spectrum of $(IPr=CH)^{i}Pr_{2}P\bulletAuCl$ (8) in C₆D₆.

Figure S22. ¹H NMR spectrum of (IPr=CH)Ph₂P•AuCl (9) in C₆D₆.

Figure S23. ¹³C{¹H} NMR spectrum of (IPr=CH)Ph₂P•AuCl (9) in C₆D₆.

Figure S24. ³¹P{¹H} NMR spectrum of (IPr=CH)Ph₂P•AuCl (9) in C_6D_6 .

161.839 MHz P31[H1] 1D in c6d6

									1
80	60	40	20	0	-20	-40	-60	-80	ppm

Figure S25. ¹H NMR spectrum of [IPr-CH₂-PPh₂•AuAr^F][BAr^F₄] (10) in CDCl₃.

Figure S26. ¹¹B{¹H} NMR spectrum of [IPr-CH₂-PPh₂•AuAr^F][BAr^F₄] (10) in CDCl₃.

NP-02-91-solid_NHOPPh2AuCl+NaBArF_tol 128.269 MHz B11[H1] 1D in cdcl3, temp 26.5 C -> actual temp = 27.0 C, autoxdb probe

Figure S27. ¹³C{¹H} NMR spectrum of [IPr- \mathcal{C} PPh₂-AuAr^F][BAr^F₄] (10) in CDCl₃.

Figure S28. ¹⁹F NMR spectrum of [IPr-CH₂-PPh₂•AuAr^F][BAr^F₄] (10) in CDCl₃.

Figure S29. ³¹P{¹H} NMR spectrum of [IPr-CH₂-PPh₂•AuAr^F][BAr^F₄] (10) in CDCl₃.

161.839 MHz P31[H1] 1D in cdcl3

Figure S30. ¹H NMR spectrum of (IPr=CH)NMe₂•AuCl (11) in C₆D₆.

Figure S31. ${}^{13}_{C_6}$ [1H] NMR spectrum of (IPr=CH)NMe₂•AuCl (11) in C₆D₆.

Figure S32. Molecular structure of (IPr=CH)NMe₂•AuCl (11) with thermal ellipsoids presented at a 30 % probability level. The hydrogen atom at C(3) is shown with an arbitrarily small thermal parameter; all remaining hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Au-C(3) 2.044(15), Au-Cl 2.300(4), C(3)-N(2) 1.44(2); Cl-Au-C(3) 177.6(4), C(1)-C(3)-Au 108.2(8), C(1)-C(3)-N(2) 110.9(16).

 Table S1. Crystallographic Experimental Details for 11.

A. Crystal Data	
formula	C ₃₀ H ₄₃ AuClN ₃
formula weight	678.09
crystal dimensions (mm)	$0.11 \times 0.10 \times 0.05$
crystal system	monoclinic
space group	<i>P</i> 2 ₁ / <i>m</i> (No. 11)
unit cell parameters ^a	
<i>a</i> (Å)	8.9505 (3)
<i>b</i> (Å)	18.1602 (7)
<i>c</i> (Å)	9.8838 (3)
β (deg)	110.4098 (17)
$V(Å^3)$	1505.69 (9)
Ζ	2
ρ_{calcd} (g cm ⁻³)	1.496
μ (mm ⁻¹)	10.14

B. Data Collection and Refinement Conditions

diffractometer	Bruker D8/APEX II CCD ^b
radiation (λ [Å])	Cu K α (1.54178) (microfocus source)
temperature (°C)	-100
scan type	ω and ϕ scans (1.0°) (5 s exposures)
data collection 2θ limit (deg)	146.18
total data collected	$10578 (-11 \le h \le 10, -22 \le k \le 22, -12 \le l \le 12)$
independent reflections	$3026 (R_{\text{int}} = 0.0306)$
number of observed reflections (NO)	$2927 \ [F_0^2 \ge 20(F_0^2)]$
structure solution method	intrinsic phasing (SHELXT-2014 ^c)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014 ^d)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.7213-0.4106
data/restraints/parameters	3026 / 0 / 189
goodness-of-fit (S) ^e [all data]	1.359
final <i>R</i> indices ^f	
$R_1 \left[F_0^2 \ge 2\sigma (F_0^2) \right]$	0.0606
wR_2 [all data]	0.1230
largest difference peak and hole	2.060 and -4.228 e Å ⁻³

*a*Obtained from least-squares refinement of 9990 reflections with $9.54^{\circ} < 2\theta < 144.30^{\circ}$.

(continued)

Table S1. Crystallographic Experimental Details for 11 (continued)

^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker. The crystal used for data collection was the 'best' of a batch of low quality crystals. The unit cell was indexed using the program CELL_NOW, and the major component fit ~60% of the thresholded reflections. There were at least an additional six components, and attempts to integrate a multicomponent dataset were not particularly successful. The noisy difference map can most likely be attributed to the fact that there are a number of additional partially overlapping components contributing to the measured intensities (this is also apparent in the list of most disagreeable reflections in the SHELXL-2014 output with I_{obs} larger than I_{calc} for the top 50 reflections). Attempts to refine the structure in P2₁ instead to P2₁/m gave massive correlations of the ADPs and a more poorlybehaved structure. New crystallization experiments are currently underway in the hope of yielding better quality single crystals.

^cSheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8. (SHELXT-2014)

dSheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8. (SHELXL-2014)

 ${}^{e}S = [\Sigma w(F_0{}^2 - F_c{}^2)^2/(n - p)]^{1/2}$ (*n* = number of data; *p* = number of parameters varied; *w* = $[\sigma^2(F_0{}^2) + 11.7041P]^{-1}$ where $P = [Max(F_0{}^2, 0) + 2F_c{}^2]/3)$.

 $f_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; \ w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$