Supporting Information for:

Optical and relaxometric properties of monometallic (EuIII, TbIII, GdIII) and heterobimetallic (ReI/GdIII) systems based on a functionalized bipyridine-containing acyclic ligand

Nadine Leygue,a,b Alexandre Boulay,a,b Chantal Galaup,a,b Eric Benoist,a,b Sophie Laurent,c,d Luce Vander Elst,,c,d Béatrice Mestre-Voegtlé,*a,b and Claude Picard*a,b

aCNRS; Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB, UMR-5068; 118 Route de Narbonne, F-31062 Toulouse cedex 9, France.

bUniversité de Toulouse; UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d’Intérêt Biologique, SPCMIB; 118 route de Narbonne, F-31062 Toulouse cedex 9, France.

cNMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 23 Place du Parc, B-7000 Mons, Belgium.

dCenter for Microscopy and Molecular Imaging (CMMI), Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium.

‡Present Address: CNRS, Laboratoire de Chimie de coordination (LCC), UPR 8241, 205 route de Narbonne, 31077 Toulouse cedex 4, France.

E-mail: luce.vanderelst@umons.ac.be (LVE), beatrice.mestre@lcc-toulouse.fr (BMV), picard@chimie.ups-tlse.fr (CP).
Table of contents

Figure S1: 1H and J MOD 13C NMR (300 and 75 MHz respectively; DMSO-d$_6$) spectra of compound 2 (H$_5$BPMNTA).

Figure S2: 1H and J MOD 13C NMR (300 and 75 MHz respectively; CDCl$_3$) spectra of compound 5.

Figure S3: 1H NMR (300 MHz; CDCl$_3$) spectra of compounds 9 and 10.

Figure S4: 1H and J MOD 13C NMR (300 and 125 MHz respectively; CDCl$_3$) spectra of compound 11.

Figure S5: 1H NMR (400 MHz; D$_2$O) and ES$^+$/HRMS spectra of compound 12.

Figure S6: HPLC-UV chromatogram and ES$^+$/HRMS spectrum of Gd-BPMNTA complex (HPLC conditions are provided in the experimental part).

Figure S7: UPLC-UV chromatogram and ES$^+$/HRMS spectrum of dinuclear Re/Gd complex 13 (UPLC conditions are provided in the experimental part).

Figure S8: Plot of emission intensity of the 5D$_0$→7F$_2$ transition (617 nm) vs. time after mixing BPMNTA chelator (1 µM) and EuCl$_3$ (1 equiv.) in Tris buffer (pH 7.4) at room temperature.

Figure S9: Plot of emission intensity of the 5D$_0$→7F$_2$ transition (617 nm) of Eu-BPMNTA complex (1 µM) vs. time in the presence of 1000 molar equivalents of EDTA in Tris buffer (pH 7.4).

Figure S10: Infrared spectrum of Re complex 9.

Figure S11: Infrared spectrum of dinuclear Re/Gd complex 13.

Figure S12: Absorption (left) and emission (right) spectra of compound 9 in CH$_3$CN.

Figure S13: Absorption (left) and emission (right) spectra of compound 10 in CH$_3$CN.

Figure S14: Plot of the paramagnetic relaxation rate, R_1^p, of Gd-BPMNTA complex and dinuclear complex 13 in water at 310 K and 20 MHz vs. complex concentrations (0.5 – 3 mM). $R_1^p =$ R_1^{obs} - R_1^{dia} where R_1^{obs} is the observed relaxation rate and R_1^{dia} is the relaxation rate in absence of paramagnetic center.

Figure S15: Temperature (278 – 318 K) dependence of the proton longitudinal relaxivity, r_1, of Gd-BPMNTA complex and dinuclear complex 13 in water at 20 MHz.

Table S1: Parameters obtained from the theoretical fitting of the O-17 data of dinuclear Re/Gd complex 13 in water at 11.75 T.

Table S2: Relaxivity values at 20 and 60 MHz (T = 310 K) and parameters obtained from the theoretical fitting of the proton NMRD data in water at 310 K of dinuclear Re/Gd complex 13.
Figure S1: 1H and J MOD 13C NMR (300 and 75 MHz respectively; DMSO-d$_6$) spectra of compound 2 (H$_5$BPMNTA).
Figure S2: 1H and J MOD 13C NMR (300 and 75 MHz respectively; CDCl$_3$) spectra of compound 5.
Figure S3: 1H NMR (300 MHz, CDCl$_3$) spectra of compounds 9 and 10.
Figure S4: 1H and J MOD 13C NMR (300 and 125 MHz respectively; CDCl$_3$) spectra of compound 11.
Figure S5: 1H NMR (400 MHz, D$_2$O) and ES$^+$/HRMS spectra of compound 12.
Figure S6: HPLC-UV chromatogram and ES'/HRMS spectrum of Gd-BPMNTA complex (HPLC conditions are provided in the experimental part).
Figure S7: UPLC-UV chromatogram and ES$^+$/HRMS spectrum of dinuclear Re/Gd complex 13 (UPLC conditions are provided in the experimental part).
Figure S8: Plot of emission intensity of the $^5D_0 \rightarrow ^7F_2$ transition (617 nm) vs. time after mixing BPMNTA chelator (1 µM) and EuCl$_3$ (1 equiv.) in Tris buffer (pH 7.4) at room temperature.

Figure S9: Plot of emission intensity of the $^5D_0 \rightarrow ^7F_2$ transition (617 nm) of Eu-BPMNTA complex (1 µM) vs. time in the presence of 1000 molar equivalents of EDTA in Tris buffer (pH 7.4).
Figure S10: Infrared spectrum of Re complex 9.

Figure S11: Infrared spectrum of dinuclear Re/Gd complex 13.
Figure S12: Absorption (left) and emission (right) spectra of compound 9 in CH$_3$CN.

Figure S13: Absorption (left) and emission (right) spectra of compound 10 in CH$_3$CN.
Figure S14: Plot of the paramagnetic relaxation rate, R_1^p, of Gd-BPMNTA complex and dinuclear complex 13 in water at 310 K and 20 MHz vs. complex concentrations (0.5 – 3 mM). $R_1^p = R_{1\text{ obs}} - R_{1\text{ dia}}$ where $R_{1\text{ obs}}$ is the observed relaxation rate and $R_{1\text{ dia}}$ is the relaxation rate in absence of paramagnetic center.

Figure S15: Temperature (278 – 318 K) dependence of the proton longitudinal relaxivity, r_1, of Gd-BPMNTA complex and dinuclear complex 13 in water at 20 MHz.
Table S1: Parameters obtained from the theoretical fitting of the O-17 data of dinuclear Re/Gd complex 13 in water at 11.75 T.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_M^{310K} [ns]</td>
<td>9.0 ± 3.0</td>
</tr>
<tr>
<td>ΔH° [kJ mol$^{-1}$]</td>
<td>55.5 ± 0.7</td>
</tr>
<tr>
<td>ΔS° [J mol$^{-1}$ K$^{-1}$]</td>
<td>87.9 ± 0.6</td>
</tr>
<tr>
<td>A/\hbar [10^6 rad s$^{-1}$]</td>
<td>-3.9 ± 0.3</td>
</tr>
<tr>
<td>B [10^{20} s$^{-2}$]</td>
<td>4.71 ± 0.85</td>
</tr>
<tr>
<td>τ_v^{298K} [ps]</td>
<td>1.35 ± 0.3</td>
</tr>
<tr>
<td>E_v [kJ mol$^{-1}$]</td>
<td>4.95 ± 3.5</td>
</tr>
</tbody>
</table>

Table S2: Relaxivity values at 20 and 60 MHz (T = 310 K) and parameters obtained from the theoretical fitting of the proton NMRD data in water at 310 K of dinuclear Re/Gd complex 13.

In the fitting procedure using the IS and OS model, some parameters were fixed: $q = 1$, $\tau_M = 9$ ns, $r_{GdH} = 0.31$ nm, $d = 0.36$ nm and $D = 2.93 \times 10^{-9}$ m2 s$^{-1}$.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_M^{310K} [ns]</td>
<td>9</td>
</tr>
<tr>
<td>τ_R^{310K} [ps]</td>
<td>138 ± 3.3</td>
</tr>
<tr>
<td>τ_{SO}^{310K} [ps]</td>
<td>87.6 ± 1.4</td>
</tr>
<tr>
<td>τ_v^{310K} [ps]</td>
<td>25.6 ± 1.5</td>
</tr>
<tr>
<td>r_1 (mM$^{-1}$ s$^{-1}$) at 20 MHz</td>
<td>6.6</td>
</tr>
<tr>
<td>r_1 (mM$^{-1}$ s$^{-1}$) at 60 MHz</td>
<td>6.0</td>
</tr>
</tbody>
</table>

S14