Supplementary information
Identification of Zr(IV)-based architectures generated from ligands incorporating the 2,2'-biphenolato unit

Chengrui Miao, Georges Khalil, Alain Chaumont, Pierre Mobian* and Marc Henry

Figure 1: Aromatic region of the 1H NMR spectra (CD$_2$Cl$_2$, 500 MHz) of the following reactions: L^1H_2, $L^1H_2 + Zr(OPr^i)_4(HOPr^i)$, 2 $L^1H_2 + Zr(OPr^i)_4(HOPr^i)$, 3 $L^1H_2 + Zr(OPr^i)_4(HOPr^i)$.

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016
Figure 2: 1H NMR spectra (500 MHz, CD$_2$Cl$_2$) of the mixture resulting from the reactions: L2H$_4$ + Zr(OPri)$_4$(HOPri) (top) and 2 L1H$_2$ + Zr(OPri)$_4$(HOPri) (down)
Figure 3: DOSY map of the mixture in CD$_2$Cl$_2$ resulting from the following reaction: $2 \text{LiH}_2^+ + \text{Zr(OPri)}_4(\text{HOPri})$
Figure 4: DOSY map of the mixture in CD$_2$Cl$_2$ resulting from the following reaction: L$_2$H$_4$ + Zr(OPri)$_4$(HOPri).
Figure 5: DOSY map of L1H$_2$ in CD$_2$Cl$_2$.
Figure 5: DOSY map of L^2H_4 in CD_2Cl_2.

Figure 6: ESI mass spectrum of the mixture obtained after mixing two equivalents of L^2H_4 with Zr(OPr^t)_4(HOPr^t). Peak at m/z = 1984.4188 corresponds to an assembly incorporating two Zr(IV) centres and three L^2 ligands (calcd for [Zr_2L^2H_4(H_2O)]^+ (C_{126}H_{84}O_{13}Zr_2) = 1984.40). Experimental peak (top) simulated peak (down).
Figure 7: ESI mass spectrum of the mixture obtained after mixing two equivalents of L^2H_4 with Zr(OPr)i_4(HOPr)i. Peak at m/z = 1898.5531 is assigned to [Zr L^3H_8(H_2O)]^+ (calcd for C_{126}H_{88}O_{13}Zr, m/z = 1898.527). Experimental peak (top) simulated peak (down).

Figure 8: Computed models of ZrL^1_2L^1H_2 and trans-ZrL^1(L^1H)_2.
Figure 9: Thermal ellipsoids plot of $\text{Zr}_4(L^2)\text{L}_2\text{H}(\mu_2\text{-OH})_5(\text{HO}^+\text{Pr})_3$.