Supporting Information

for

Homoleptic and heteroleptic bis-NHC Cu(I) complexes as carbene transfer reagents

Orlando Santoro, Faïma Lazreg, David B. Cordes, Alexandra M. Z. Slawin and Catherine S. J. Cazin*

EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.

cc111@st-andrews.ac.uk

Contents

1.	Ger	neral Information	S3
2.	Ger	neral procedure for the transmetallation from Cu to Au	S3
2	.1	Synthesis of [Au(IMes) ₂]BF ₄ (2b)	S3
2	.2	Synthesis of [Au(IPr)((I ^t Bu)]BF ₄ (4b)	S4
2	.3	Synthesis of [Au(IPr)(ICy)]BF ₄ (5b)	S4
3.	Syn	thetic attempts towards [Au(IPr) ₂]BF ₄ (1b)	S5
4.	Syn	thetic attempts towards [Au(IPr)(IMes)]BF ₄ (3b)	S6
5.	Ger	neral procedure for the transmetalation from Cu to Pd	S7
5	.1	Synthesis of [Pd(Cl)(NCPh)(IMes) ₂]BF ₄ (2c)	S7
5	.2	Synthesis of [Pd(Cl)(NCPh)(IPr)(I'Bu)]BF ₄ (4 c)	S8
6.	¹ H-	, ¹³ C-{ ¹ H} and ¹⁹ F-{1H} NMR spectra	S9
7.	Cry	stallographic data for complexes 2c and 4c	.S19
8.	Ref	erences	.S20

1. General Information

All reactions were carried out under argon atmosphere using standard Schlenk and glovebox techniques. Chemicals were used as received unless otherwise noted. Bis-NHC copper complexes were synthesised following the reported procedures.¹ Dry CH₂Cl₂ was obtained from a PureSolv SPS-400-5 solvent purification system. ¹H, and ¹³C-{¹H} Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker-400 MHz or 300 MHz spectrometers using the residual solvent peak as reference (CDCl₃: $\delta_H = 7.26$ ppm, $\delta_C = 77.16$ ppm, CD₂Cl₂: $\delta_H = 5.32$ ppm, $\delta_C = 53.84$ ppm) at 298K.

Elemental analyses were performed at London Metropolitan University 166-220, Holloway Road, London, N7 8DB.

2. General procedure for the transmetallation from Cu to Au

In a glovebox, a 3 mL vial was charged with the copper complex (250 mg, 1 equiv.), [Au(Cl)(DMS)] (1 equiv.) and CH_2Cl_2 (2 mL). The reaction mixture was stirred at 40 °C for 16 h. The reaction mixture was filtered in air through a plug of Celite and concentrated under reduced pressure. Pentane (12 mL) was then added and the precipitate was collected by filtration.

2.1 Synthesis of $[Au(IMes)_2]BF_4 (2b)^1$

The reaction between $[Cu(IMes)_2]BF_4$ **2a** (250 mg, 0.33 mmol, 1 equiv.) and [Au(Cl)(DMS)] (99 mg, 0.33 mmol, 1 equiv.) afforded **2b** as a colourless solid in 88% yield (0.29 mmol, 259 mg).

¹H NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.68 (s, 24H, CH₃), 2.42 (s, 12H, CH₃), 6.87 (s, 8H, CH phenyl), 7.10 (s, 4H, H⁴ and H⁵).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298 K): δ (ppm) = 17.2 (s, CH₃), 21.3 (s, CH₃), 123.2 (s, C^{IV} Ar), 129.6 (s, CH Ar), 134.1 (s, C⁴ and C⁵), 134.2 (s, C^{IV} Ar), 139.4 (s, C^{IV} Ar), 185.1 (s, C²).

¹⁹F-{¹H} NMR (282 Hz, CDCl₃, 298K): δ (ppm) = -154.3 (s, BF₄), -154.3 (s, BF₄).

Anal. Calcd for C₄₂H₄₈BAuF₄N₄: C, 56.51; H, 5.42; N, 6.28. Found: C, 56.39; H, 5.44; N, 6.34.

2.2 Synthesis of $[Au(IPr)((I^tBu)]BF_4(4b)^2]$

The reaction between $[Cu(IPr)((I^{t}Bu)]BF_{4}$ **4a** (250 mg, 0.35 mmol, 1 equiv.) and [Au(Cl)(DMS)] (97 mg, 0.33 mmol, 1 equiv.) afforded **4b** as a colourless solid in 83% yield (0.29 mmol, 247 mg).

¹**H NMR (400 MHz, CDCl₃, 298 K):** δ (ppm) = 1.24 (d, ${}^{3}J_{\text{H-H}}$ = 6.9 Hz, 12H, CH-CH₃), 1.26 (d, ${}^{3}J_{\text{H-H}}$ = 6.9 Hz, 12H, CH-CH₃ IPr), 1.27 (s, 18H, C(CH₃)₃ I^tBu), 2.65 (sept, ${}^{3}J_{\text{H-H}}$ = 6.9 Hz, 4H, CH-CH₃), 7.12 (s, 2H, H^{4} and H^{5} I^tBu), 7.34 (d, ${}^{3}J_{\text{H-H}}$ = 7.8 Hz, 4H, CH phenyl), 7.45 (s, 2H, H^{4} and H^{5} IPr), 7.54 (t, ${}^{3}J_{\text{H-H}}$ = 7.8 Hz, 2H, CH phenyl).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298 K): δ (ppm) = 23.8 (s, CH-CH₃), 24.8 (s, CH-CH₃), 28.9 (s, CH-CH₃), 31.8 (s, C(CH₃)₃), 58.2 (s, C(CH₃)₃), 117.9 (s, C⁴ and C⁵ I^tBu), 124.7 (s, C⁴ and C⁵ IPr), 124.8 (s, CH Ar), 131.0 (s, CH Ar), 134.5 (s, C^{IV}), 145.7 (s, C^{IV} Ar), 179.8 (s, C² I^tBu), 185.6(s, C² IPr).

¹⁹F-{¹H} NMR (282 Hz, CDCl₃, 298K): δ (ppm) = -154.16 (s, BF₄), -154.21 (s, BF₄). Anal. Calcd for C₃₈H₅₆BAuF₄N₄: C, 53.53; H, 6.62; N, 6.57. Found: C, 53.66; H, 6.68; N, 6.39.

2.3 Synthesis of [Au(IPr)(ICy)]BF₄ (5b)²

The reaction between $[Cu(IPr)(ICy)]BF_4$ **5a** (250 mg, 0.32 mmol, 1 equiv.) and [Au(Cl)(DMS)] (97 mg, 0.33 mmol, 1 equiv.) afforded **5b** as a colourless solid in 86% yield (0.28 mmol, 252 mg).

¹**H NMR (400 MHz, CDCl₃, 298 K):** δ (ppm) = 0.89 – 1.06 (m, 4 H, *CH*₂ ICy), 1.09 – 1.14 (m, 2H, *CH*₂ ICy) 1.27 (d, ³*J*_{H-H} = 6.9 Hz, 24H, CH-*CH*₃ IPr), 1.59 – 1.67 (m, 4H, *CH*₂ ICy 2.65) 2.57 (sept, ³*J*_{H-H} = 6.9 Hz, 4H, *CH*-CH₃ IPr), 7.01 (s, 2H, *H*⁴ and *H*⁵ ICy), 7.37 (d, ³*J*_{H-H} = 7.8 Hz, 4H, *CH* phenyl), 7.41 (s, 2H, *H*⁴ and *H*⁵ IPr), 7.58 (t, ³*J*_{H-H} = 7.8 Hz, 2H, *CH* phenyl).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298 K): δ (ppm) = 23.9 (s, CH-CH₃), 24.6 (s, CH₂ ICy), 25.0 (s, CH₂ ICy), 25.9 (s, CH-CH₃), 28.9 (s, CH-CH₃), 33.8 (s, CH₂ ICy), 60.8 (s, CH ICy), 118.8 (s, C^4 and C^5 ICy), 124.5 (s, CH Ar), 124.8 (s, C^4 and C^5 IPr), 131.2 (s, CH Ar), 133.8 (s, C^{IV} Ar), 146.2 (s, C^{IV} Ar), 178.6 (s, C^2 IPr), 187.3 (s, C^2 ICy). ¹⁹F-{¹H} NMR (282 Hz, CDCl₃, 298K): δ (ppm) = -154.0 (s, BF₄), -154.0 (s, BF₄).

3. Synthetic attempts towards [Au(IPr)₂]BF₄ (1b)

In a glovebox, a 3 mL vial was charged with $[Cu(IPr)_2]BF_4$ (1a) (50 mg, 0.05 mmol, 1 equiv.), [Au(Cl)(DMS)] (15 mg, 0.05 mmol, 1 equiv.) and the solvent (1 mL). The reaction mixture was stirred at the stated temperature for the time indicated. The reaction mixture was filtered in air through a plug of Celite and concentrated under reduced pressure. Pentane (5 mL) was then added and the solid obtained was collected by filtration and analysed by ¹H NMR and ¹³C-{¹H} NMR spectroscopy.

Entry	Solvent	Temperature	Time	Outcome ^{<i>a</i>}
1	CH_2Cl_2	r.t.	16 h	1a
2	CH_2Cl_2	40 °C	16 h	1a + decomposition
3	CH_2Cl_2	40 °C	24 h	1a + decomposition
4	CH ₃ CN	r.t	16 h	1a
5	CH ₃ CN	40 °C	16 h	1a + decomposition
6	CH ₃ CN	80 °C	16 h	decomposition
7	^{<i>i</i>} PrOH	80 °C	16 h	decomposition

Table S1 Synthetic attempts towards **1b** Reaction conditions: **1a** 50 mg (0.05 mmol, 1 equiv.), [Au(Cl)(DMS)] 16 mg (0.05 mmol, 1 equiv.), solvent (1 mL). ^{*a*} Determined by NMR spectroscopy.

4. Synthetic attempts towards [Au(IPr)(IMes)]BF₄ (3b)

In a glovebox, a 3 mL vial was charged with the **3a** (50 mg, 0.06 mmol, 1 equiv.), [Au(Cl)(DMS)] (17 mg, 0.06 mmol, 1 equiv.) and the solvent (1 mL). The reaction mixture was stirred at the stated temperature for the time indicated. The reaction mixture was filtered through a plug of Celite and concentrated under reduced pressure. Pentane (5 mL) was then added and the solid obtained was collected by filtration and analysed by ¹H NMR spectroscopy.

Entry	Solvent	Temperature	Time	Outcome ^a
1	CH_2Cl_2	r.t.	16 h	3 a
2	CH_2Cl_2	40 °C	16 h	3a + decomposition
3	CH ₃ CN	r.t	16 h	[Au(IMes) ₂]BF ₄ 2b (46%)
4	CH ₃ CN	40 °C	16 h	[Au(IMes) ₂]BF ₄ 2b (80%)
5	CH_2Cl_2	80 °C	16 h	$[Au(IMes)_2]BF_4 2b (80\%)$

Table S2 Synthetic attempts towards **3b**. Reaction conditions: **3a** 50 mg (0.06 mmol, 1 equiv.), [Au(Cl)(DMS)] 18 mg (1 equiv.), solvent (1 mL). ^{*a*} Determined by NMR spectroscopy. Conversions in parentheses.

5. General procedure for the transmetalation from Cu to Pd

In a glovebox, a 3 mL vial was charged with the copper complex (250 mg, 1 equiv.), $[Pd(Cl)_2(NCPh)_2]$ (1 equiv.) and CH_2Cl_2 (2 mL). The reaction mixture was stirred at 40 °C for 24 h. Under argon atmosphere, the crude was filtered through a plug of Celite and concentrated under reduced pressure. Pentane (12 mL) was then added and the precipitate was collected by filtration.

5.1 Synthesis of [Pd(Cl)(NCPh)(IMes)₂]BF₄ (2c)

The reaction between 2a (250 mg, 0.33 mmol, 1 equiv.) and $[Pd(Cl)_2(NCPh)_2]$ (127 mg, 0.33 mmol, 1 equiv.) afforded 2c as a yellow solid in 77% yield (0.25 mmol, 235 mg). Crystals suitable for X-ray analysis were obtained from a saturated solution of 2c in chloroform.

¹**H** NMR (400 MHz, CDCl₃, 298 K): δ (ppm) = 1.63 (s, 12H, CH₃), 1.92 (s, 12H, CH₃), 2.53 (s, 12H, CH₃), 6.92 (s, 4H, CH phenyl), 6.97 (s, 4H, H^4 and H^5), 7.02 (s, 4H, CH phenyl), 7.34 (d, ${}^{3}J_{\text{H-H}} = 7.6$ Hz, 2H, CH ortho PhCN), 7.74 (t, ${}^{3}J_{\text{H-H}} = 7.9$ Hz 2H, CH meta PhCN), 7.89 (t, ${}^{3}J_{\text{H-H}} = 7.4$ Hz, 1H, CH para PhCN).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298 K): δ (ppm) = 17.9 (s, CH₃), 18.7 (s, CH₃), 21.4 (s, CH₃), 108.4 (s, C^{IV} PhCN), 121.4 (s, PhCN), 124.1 (s, C⁴ and C⁵), 129.1 (s, CH Ar), 130.1 (CH meta PhCN) 130.6 (s, CH Ar) 132.1 (CH ortho PhCN), 134.0 (s, C^{IV} Ar), 134.5 (s, C^{IV} Ar), 136.2 (CH para PhCN), 136.4 (s, C^{IV} Ar), 139.2 (C^{IV} Ar), 164.2 (s, C²)

¹⁹F-{¹H} NMR (282 Hz, CDCl₃, 298K): δ (ppm) = -154.0 (s, BF₄), -154.0 (s, BF₄).

Anal. Calcd for C₄₉H₅₃BClF₄N₅Pd: C, 62.57; H, 5.68; N, 7.45. Found: C, 62.50; H, 5.56; N, 7.57.

5.2 Synthesis of [Pd(Cl)(NCPh)(IPr)(I^tBu)]BF₄ (4c)

The reaction between **4a** (250 mg, 0.35 mmol, 1 equiv.) and $[Pd(Cl)_2(NCPh)_2]$ (134 mg, 0.35 mmol, 1 equiv.) afforded **4c** as a yellow solid in 83% yield (0.29 mmol, 249 mg). Crystals suitable for X-ray analysis were obtained from a saturated solution of **4c** in chloroform.

¹**H NMR (400 MHz, CDCl₃, 298 K):** δ (ppm) = 1.13 (d, ${}^{3}J_{\text{H-H}}$ = 6.9 Hz, 12H, CH-CH₃), 1.26 (d, ${}^{3}J_{\text{H-H}}$ = 6.9 Hz, 12H, CH-CH₃) IPr), 1.49 (s, 18H, C(CH₃)₃ I^tBu), 2.88 (sept, ${}^{3}J_{\text{H-H}}$ = 6.9 Hz, 4H, CH-CH₃), 7.17 (s, 2H, H^{4} and H^{5} I^tBu), 7.29 (s, 2H, H^{4} and H^{5} IPr), 7.41 (m, 6H, CH phenyl overlapped with CH ortho PhCN), 7.63 (m, 4H, CH phenyl overlapped with CH meta PhCN), 7.78 (t, ${}^{3}J_{\text{H-H}}$ = 7.4 Hz, 1H, CH para PhCN).

¹³C-{¹H} NMR (75 MHz, CDCl₃, 298 K): δ (ppm) = 22.6 (s, CH-CH₃), 26.6 (s, CH-CH₃), 28.9 (s, CH-CH₃), 31.8 (s, C(CH₃)₃), 59.3 (s, C(CH₃)₃), 108.1 (s, C^{IV} PhCN) 120.3 (s, C⁴ and C⁵ I'Bu), 123.1 (s, PhCN), 124.5 (s, C⁴ and C⁵ IPr), 125.9 (s, CH Ar), 130.8 (s, CH Ar), 131.2 (CH meta PhCN), 132.8 (s, CH ortho PhCN), 135.2 (s, C^{IV}), 136.2 (s, CH para PhCN), 146.6 (bs, C^{IV} Ar), 156.7 (s, C² I'Bu), 168.1 (s, C² IPr).

¹⁹**F**-{¹**H**} **NMR (282 Hz, CDCl₃, 298K)**: δ (ppm) = -153.3 (s, BF₄), -153.6 (s, BF₄).

Anal. Calcd for C₄₅H₆₁BClF₄N₅Pd: C, 60.01; H, 6.83; N, 7.78. Found: C, 60.18; H, 6.94; N, 7.65.

 $[Au(IMes)_2]BF_4~(\textbf{2b}),~^{19}\text{F-}\{^1\text{H}\}~\text{NMR},~\text{CDCl}_3,~298~\text{K}$

 $\sim \frac{-154.16}{-154.21}$

 $[Au(IPr)(ICy)]BF_{4} ({\bf 5b}), {}^{19}F{-}{}^{1}H} NMR, CDCl_{3}, 298 K$

 $[Pd(Cl)(NCPh)(IPr)(I'Bu)]BF_4 (\textbf{4c}), {}^{19}F\text{-}\{{}^{1}H\} NMR, CDCl_3, 298 K$

	2c	4c
CCDC number	CCDC 1435102	CCDC 1435103
Emperical formula	C ₅₀ H ₅₄ BCl ₄ F ₄ N ₅ Pd	C ₄₆ H ₆₂ BCl ₄ F ₄ N ₅ Pd
Formula Weight	1060.03	1020.04
Crystal color, Habit	colourless, prism	colorless, prism
Temperature (K)	173.15	173.15
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ (#4)	Cc (#9)
Unit cell dim.	0.300 X 0.030 X 0.030 mm	0.300 X 0.060 X 0.060 mm
Lattice type	Primitive	C-centered
	a = 11.609(4) Å	a = 18.242(3) Å
Lattice parameter	b = 10.843(3) Å	b = 16.276(2) Å
a,b,c (A)	c = 20.674(7) Å	c = 18.471(3) Å
α,β,γ (°)	β = 91.013(8) ⁰	β = 115.779(4) ⁰
Volume (Å) ³	V = 2602.0(14) Å ³	V = 4938.4(13) Å ³
Z	2	4
Density calculated	1.353 g/cm ³	1.372 g/cm ³
Absorption coefficient (cm ⁻¹)	6.142 cm ⁻¹	6.439 cm ⁻¹
F(000)	1088.00	2112.00
Diffractometer	XtaLAB P200	XtaLAB P200
	ΜοΚα (λ = 0.71075 Å)	ΜοΚα (λ = 0.71075 Å)
Radiation	multi-laver mirror	multi-laver mirror
	monochromated	monochromated
Voltage, Current	45kV, 66mA	45kV, 66mA
Theta range for data collection (°)	2Θ _{max =} 50.8 ⁰	2 Θ_{max} = 50.8 ⁰
	Total: 30536	Total: 29539
Reflexions collected	Unique: 9371 (R _{int} = 0.0000)	Unique: 8800 (R _{int} = 0.0631)
	Lorentz-polarization	Lorentz-polarization
Correction	Absorption	Absorption
	(trans. factors: 0.544 - 0.982)	(trans. factors: 0.622 - 0.962)
Structure solution	Direct Methods (SIR2004)	Direct Methods (SIR2004))
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Anomalous dispersion	All non-hydrogen atoms	All non-hydrogen atoms

7. Crystallographic data for complexes 2c and 4c

No. Observations (all reflections)	9371	8800
No. variables	599	564
Reflection/parameter ratio	15.64	15.60
Goodness-of-fit on F ²	1.086	1.022
R1 (I>2.00σ(I))	0.1213	0.0532
R (All reflections)	0.1598	0.0756
Maximum peak in Final Diff Map (e.Å ⁻³)	3.29 e⁻/Å ³	1.34 e⁻/Å ³
Minimum peak in Final Diff Map (e.Å ⁻³)	-2.01 e⁻/Å ³	0.55 e ⁻ /Å ³
Max shift/error in final cycle	0.000	0.000

8. References

- 1. F. Lazreg, D. B. Cordes, A. M. Z. Slawin and C. S. J. Cazin, *Organometallics*, 2015, 34, 419.
- 2. S. Gaillard, P. Nun, A. M. Z. Slawin and S. P. Nolan, Organometallics, 2010, 29, 5402.