Regulating the anticancer properties of organometallic dendrimers using pyridylferrocene entities: Synthesis, cytotoxicity and DNA binding studies.

Preshendren Govender,a Tina Riedel,b Paul J. Dyson,b and Gregory S. Smith*,a

a Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
b Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

Supplementary Data

*Corresponding author: Tel.: +27 21 6505279; Fax: +27 21 6505195.
Email address: Gregory.Smith@uct.ac.za (Gregory Smith)
1H-NMR spectra of selected metalloendrimers and their binuclear model complexes:

Figure S1: 1H NMR spectrum of [1][PF$_6$]$_4$ in acetone-d_6.

![Figure S1: 1H NMR spectrum of [1][PF$_6$]$_4$ in acetone-d_6.](image-url)
Figure S2: 1H NMR spectrum of $[3][PF_6]_4$ in acetone-d_6.

PSP-107Ha_Acetone_1H
Figure S3: 1H NMR spectrum of [5][PF$_6$]$_4$ in acetone-d_6.
PSP-103Ha_Acetone_1H
Figure S4: 1H NMR spectrum of [7][PF$_6$]$_4$ in acetone-d_6.

PGP_101Hs_Acetone_1H
Figure S5: 1H NMR spectrum of [9][PF$_6$] in acetone-d_6.

PPG-9bHb_Acetone_1H
Figure S6: 1H NMR spectrum of [10][PF$_6$] in acetone-d_6.
Figure S7: 1H NMR spectrum of [11]PF$_6$ in acetone-d_6.

PGP-102Ha_Acetone_1H
Figure S8: 1H NMR spectrum of [12][PF$_6$] in acetone-d_6.

PPM 100kHz in D6-Acetone
1H Spectrum
Praishen
Infrared spectra of selected metallo dendrimers and their binuclear model complexes:

Figure S9: Infrared spectrum of [1][PF₆]₄ in the solid state.
Figure S10: Infrared spectrum of $[3][PF_6]_4$ in the solid state.
Figure S11: Infrared spectrum of [5][PF₆]₄ in the solid state.
Figure S12: Infrared spectrum of [7][PF₆]₄ in the solid state.
Figure S13: Infrared spectrum of [9][PF₆] in the solid state.
Figure S14: Infrared spectrum of [10][PF₆] in the solid state.
Figure S15: Infrared spectrum of [11][PF₆] in the solid state.
Figure S16: Infrared spectrum of [12][PF$_6$] in the solid state.