Supporting Information

Experimental Study on Arsoles; Structural Variation, Optical and Electronic Properties, and Emission Behavior

Makoto Ishidoshiro, Hiroaki Imoto, Susumu Tanaka, Kensuke Naka*

Contents:
1. NMR spectra
2. Crystallographic data
3. Optical properties
4. CV data
5. XRD patterns
6. Theoretical calculations
7. References
1. NMR spectra

Figure S1. 1H NMR spectrum (400 MHz) of 5b in CDCl$_3$.

Figure S2. 13C NMR spectrum (100 MHz) of 5b in CDCl$_3$.
Figure S3. 1H NMR spectrum (400 MHz) of 5d in CDCl$_3$.

Figure S4. 13C NMR spectrum (100 MHz) of 5d in CDCl$_3$.
Figure S5. 1H NMR spectrum (400 MHz) of 5e in acetone-d_6.

Figure S6. 13C NMR spectrum (100 MHz) of 5e in CD$_2$Cl$_2$.
Figure S7. 1H NMR spectrum (400 MHz) of 6b in CDCl₃.

Figure S8. 13C NMR spectrum (100 MHz) of 6b in CDCl₃.
Figure S9. 31P NMR spectrum (161.5 MHz) of 6b in CDCl₃.

Figure S10. 1H NMR spectrum (400 MHz) of 7a in CDCl₃.
Figure S11. 1H NMR spectrum (400 MHz) of 7b in CDCl$_3$.

Figure S12. 13C NMR spectrum (100 MHz) of 7b in CDCl$_3$.
Figure S13. 1H NMR spectrum (400 MHz) in CDCl$_3$ measured after employment of Suzuki-Miyaura coupling reaction with 6b and 4-methoxyphenylboronic acid.
2. Crystallographic data

Table S1. Crystallographic Data.

<table>
<thead>
<tr>
<th>Crystal data</th>
<th>5b</th>
<th>5d</th>
<th>5e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C\textsubscript{22}H\textsubscript{15}AsBr\textsubscript{2}</td>
<td>C\textsubscript{22}H\textsubscript{15}AsBr\textsubscript{2}</td>
<td>C\textsubscript{26}H\textsubscript{27}AsN\textsubscript{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>514.09</td>
<td>514.09</td>
<td>442.43</td>
</tr>
<tr>
<td>Crystal Dimension [mm3]</td>
<td>0.143 × 0.130 × 0.040</td>
<td>0.200 × 0.200 × 0.030</td>
<td>0.230 × 0.190 × 0.030</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P\textsubscript{2}\textsubscript{1}</td>
<td>P\textsubscript{2}\textsubscript{1}</td>
<td>P2\textsubscript{1}/n</td>
</tr>
<tr>
<td>a [Å]</td>
<td>14.854(9)</td>
<td>14.854(9)</td>
<td>16.513(9)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>5.972(3)</td>
<td>5.972(3)</td>
<td>6.169(3)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>21.848(13)</td>
<td>21.848(13)</td>
<td>22.038(13)</td>
</tr>
<tr>
<td>α [°]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β [°]</td>
<td>98.216(7)</td>
<td>98.216(7)</td>
<td>105.993(6)</td>
</tr>
<tr>
<td>γ [°]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Volume [Å3]</td>
<td>1918(2)</td>
<td>1918(2)</td>
<td>2158(2)</td>
</tr>
<tr>
<td>D\textsubscript{calcd} [g·cm-3]</td>
<td>1.780</td>
<td>1.780</td>
<td>1.362</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>F(000)</td>
<td>1000.00</td>
<td>1000.00</td>
<td>920.00</td>
</tr>
</tbody>
</table>

Data Collection

Temperature [°C]	23.0	23.0	23.0
2θ\textsubscript{max} [°]	55.1	55.0	55.1
Tmin/Tmax	0.605 / 0.788	0.624 / 0.708	0.833 / 0.953

Refinement

No. of Observed Data	8824	4562	4948
No. of Parameters	451	244	262
R1a, wR2b	0.0620, 0.0890	0.0440, 0.1158	0.0541, 0.1224

\[\text{R1} = \Sigma | |Fo| - |Fc| / \Sigma |Fo| \]
\[\text{wR2} = [\Sigma w ((Fo^2-Fc^2)^2 / \Sigma w (Fo^2)^2)]^{1/2} \]
\[w = \left[\sigma(Fo^2) \right]^{-1} \]

CCDC #1449110 (5b), 1449111 (5d), and 1449112 (5e).

The crystallographic data of 5a, 5c, and 6a have been reported in the previous literature.[1]
Table S2. ORTEP drawing (ellipsoids at 50% probability), selected angles (deg) and distance (Å) of 5b.

<table>
<thead>
<tr>
<th>Interplanar Angles (°)</th>
<th>As(1)C(1)C(2)C(3)C(4)-C(5)C(6)C(7)C(8)C(9)C(10)</th>
<th>7.03</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As(1)C(1)C(2)C(3)C(4)-C(11)C(12)C(13)C(14)C(15)C(16)</td>
<td>5.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>As(1)-C(1)</th>
<th>1.95(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As(1)-C(4)</td>
<td>1.95(1)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(17)</td>
<td>1.944(8)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)</td>
<td>1.36(1)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)</td>
<td>1.44(1)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)</td>
<td>1.35(1)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(5)</td>
<td>1.46(2)</td>
</tr>
<tr>
<td></td>
<td>C(4)-C(11)</td>
<td>1.47(2)</td>
</tr>
<tr>
<td></td>
<td>As(2)-C(23)</td>
<td>1.94(1)</td>
</tr>
<tr>
<td></td>
<td>As(2)-C(26)</td>
<td>1.96(1)</td>
</tr>
<tr>
<td></td>
<td>As(2)-C(39)</td>
<td>1.96(1)</td>
</tr>
<tr>
<td></td>
<td>C(23)-C(24)</td>
<td>1.34(1)</td>
</tr>
<tr>
<td></td>
<td>C(24)-C(25)</td>
<td>1.44(2)</td>
</tr>
<tr>
<td></td>
<td>C(25)-C(26)</td>
<td>1.37(1)</td>
</tr>
<tr>
<td></td>
<td>C(23)-C(27)</td>
<td>1.47(2)</td>
</tr>
<tr>
<td></td>
<td>C(26)-C(33)</td>
<td>1.49(2)</td>
</tr>
</tbody>
</table>

| Angle (°) | C(1)-As(1)-C(4) | 87.3(4) |

S10
<table>
<thead>
<tr>
<th>Bond/Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-As(1)-C(17)</td>
</tr>
<tr>
<td>C(4)-As(1)-C(17)</td>
</tr>
<tr>
<td>As(1)-C(1)-C(2)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)</td>
</tr>
<tr>
<td>As(1)-C(4)-C(3)</td>
</tr>
<tr>
<td>As(1)-C(1)-C(5)</td>
</tr>
<tr>
<td>As(1)-C(4)-C(11)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(5)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(11)</td>
</tr>
<tr>
<td>C(23)-As(2)-C(26)</td>
</tr>
<tr>
<td>C(23)-As(2)-C(39)</td>
</tr>
<tr>
<td>C(26)-As(2)-C(39)</td>
</tr>
<tr>
<td>As(2)-C(23)-C(24)</td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)</td>
</tr>
<tr>
<td>C(24)-C(25)-C(26)</td>
</tr>
<tr>
<td>As(2)-C(26)-C(25)</td>
</tr>
<tr>
<td>As(2)-C(23)-C(27)</td>
</tr>
<tr>
<td>As(2)-C(26)-C(33)</td>
</tr>
<tr>
<td>C(24)-C(23)-C(27)</td>
</tr>
<tr>
<td>C(25)-C(26)-C(33)</td>
</tr>
</tbody>
</table>
Table S3. ORTEP drawing (ellipsoids at 50% probability), selected angles (deg) and distance (Å) of 5d.

<table>
<thead>
<tr>
<th>interplanar angles (°)</th>
<th>As(1)C(1)C(2)C(3)C(4)-C(5)C(6)C(7)C(8)C(9)C(10)</th>
<th>3.84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As(1)C(1)C(2)C(3)C(4)-C(12)C(13)C(14)C(15)C(16)C(17)</td>
<td>2.69</td>
</tr>
<tr>
<td>distance (Å)</td>
<td>As(1)-C(1)</td>
<td>1.949(6)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(4)</td>
<td>1.942(5)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(19)</td>
<td>1.960(5)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)</td>
<td>1.346(8)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)</td>
<td>1.447(8)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)</td>
<td>1.349(9)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(5)</td>
<td>1.469(8)</td>
</tr>
<tr>
<td></td>
<td>C(4)-C(12)</td>
<td>1.470(8)</td>
</tr>
<tr>
<td>angle (°)</td>
<td>C(1)-As(1)-C(4)</td>
<td>87.2(3)</td>
</tr>
<tr>
<td></td>
<td>C(1)-As(1)-C(19)</td>
<td>102.1(3)</td>
</tr>
<tr>
<td></td>
<td>C(4)-As(1)-C(19)</td>
<td>101.6(3)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(1)-C(2)</td>
<td>109.0(4)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)-C(3)</td>
<td>117.1(5)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)-C(4)</td>
<td>117.6(5)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(4)-C(3)</td>
<td>108.8(4)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(1)-C(5)</td>
<td>123.9(4)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(4)-C(12)</td>
<td>123.6(4)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(1)-C(5)</td>
<td>126.7(6)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)-C(12)</td>
<td>127.4(5)</td>
</tr>
</tbody>
</table>
Table S4. ORTEP drawing (ellipsoids at 50% probability), selected angles (deg) and distance (Å) of 5e.

<table>
<thead>
<tr>
<th>interplanar angles (°)</th>
<th>As(1)C(1)C(2)C(3)C(4)-C(5)C(6)C(7)C(8)C(9)C(10)</th>
<th>7.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance (Å)</td>
<td>As(1)-C(1)</td>
<td>1.948(3)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(4)</td>
<td>1.950(3)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(21)</td>
<td>1.949(4)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)</td>
<td>1.341(5)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)</td>
<td>1.446(4)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)</td>
<td>1.347(5)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(5)</td>
<td>1.460(4)</td>
</tr>
<tr>
<td></td>
<td>C(4)-C(13)</td>
<td>1.460(5)</td>
</tr>
<tr>
<td>angle (°)</td>
<td>C(1)-As(1)-C(4)</td>
<td>87.4(1)</td>
</tr>
<tr>
<td></td>
<td>C(1)-As(1)-C(21)</td>
<td>100.8(1)</td>
</tr>
<tr>
<td></td>
<td>C(4)-As(1)-C(21)</td>
<td>100.4(1)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(1)-C(2)</td>
<td>108.4(3)</td>
</tr>
<tr>
<td></td>
<td>C(1)-C(2)-C(3)</td>
<td>117.8(3)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(3)-C(4)</td>
<td>117.5(3)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(4)-C(3)</td>
<td>108.3(3)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(1)-C(5)</td>
<td>123.4(2)</td>
</tr>
<tr>
<td></td>
<td>As(1)-C(4)-C(13)</td>
<td>123.4(3)</td>
</tr>
<tr>
<td></td>
<td>C(2)-C(1)-C(5)</td>
<td>128.0(3)</td>
</tr>
<tr>
<td></td>
<td>C(3)-C(4)-C(13)</td>
<td>128.0(3)</td>
</tr>
</tbody>
</table>
Figure S14 (a) Packing structure of 5a. The hydrogen atoms are omitted for clarity. (b) Intermolecular CH-π interaction.

Figure S15 (a) Packing structure of 5b. The hydrogen atoms are omitted for clarity. (b) Intermolecular CH-π interaction.
Figure S16 (a) Packing structure of 5c. The hydrogen atoms are omitted for clarity. (b) Intermolecular CH-π interaction.

Figure S17 (a) Packing structure of 5d. The hydrogen atoms are omitted for clarity. (b) Intermolecular CH-π interaction.
3. Optical properties

Figure S18. PL spectra of 5_{cry} and 5_{grd} (excited at 350 nm).

Figure S19. PL spectra of $5e$ in various solvents.
4. CV data

Figure S20. Cyclic voltammograms of (a) 5a, (b) 5b, (c) 5c, (d) 5d, (e) 5e and (f) 6a measured in THF solutions \((c = 0.1 \text{ M})\) at the scan rate of 100 mV/s under N\(_2\). The working electrode was a glassy carbon, the counter electrode was a platinum wire, and the reference electrode was an Ag\(^0\) / Ag\(^+\).

Figure S21. Cyclic voltammograms of 5a measured in THF solutions \((c = 0.1 \text{ M})\) at the scan rate of 100 mV/s under N\(_2\). The working electrode was a glassy carbon, the counter electrode was a platinum wire, and the reference electrode was an Ag\(^0\) / Ag\(^+\).
5. XRD patterns

Figure S22. XRD patterns of $5e_{\text{solv}}$ and $5e_{\text{grd}}$, and simulated PXRD of $5e_{\text{cry}}$.
6. Theoretical calculations

Figure S23. Molecular orbitals of the HOMO and LUMO. The geometries were optimized by DFT calculation at the B3LYP/6-31G+(d) level of theory; calculated with the Gaussian 09 suit program.[2]
Table S5. Calculated energy levels, HOMO-LUMO transition energies, and torsion angles.a

<table>
<thead>
<tr>
<th></th>
<th>Optimized geometryb</th>
<th>Single crystal XRDc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOMO [eV]d</td>
<td>LUMO [eV]d</td>
</tr>
<tr>
<td>5a</td>
<td>-5.51</td>
<td>-2.00</td>
</tr>
<tr>
<td>5b</td>
<td>-5.72</td>
<td>-2.32</td>
</tr>
<tr>
<td>5c</td>
<td>-5.05</td>
<td>-1.78</td>
</tr>
<tr>
<td>5d</td>
<td>-5.09</td>
<td>-1.74</td>
</tr>
<tr>
<td>5e</td>
<td>-4.55</td>
<td>-1.48</td>
</tr>
<tr>
<td>6a</td>
<td>-5.52</td>
<td>-1.92</td>
</tr>
</tbody>
</table>

aAll calculation were performed at the B3LYP/6-31G+(d) level of theory with the Gaussian 09 suit program. bStructures optimized by DFT calculation. cStructures obtained by single crystal X-ray diffraction. dDFT calculation. eTD-DFT calculation. fTorsion angles of the cyclopentadiene and aryl groups. g5b adopt two different conformations in the single crystal.
Table S6. Atom coordinates and absolute energy levels for 5a optimized in the S0 state.

5a (S0 state): E(RB3LYP) = -3082.40024809 A.U.

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.72572</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.724739</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.34727</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.346589</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>0</td>
<td>-0.00031</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1.27258</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1.271781</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-2.78854</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>2.787918</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.000525</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.000974</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.000645</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.001269</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0.001635</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.001802</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0.000247</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.001274</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.00085</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.001918</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.00244</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-3.69056</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-3.32538</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-4.70266</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-5.06681</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-5.58125</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-2.65432</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-5.09072</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-3.30449</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-5.74067</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-6.6545</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>3.689873</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>0</td>
<td>3.324652</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>4.702255</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>5.06608</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>5.58043</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.654198</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>5.090221</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>3.305358</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>5.739886</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>6.653803</td>
</tr>
</tbody>
</table>
Table S7. Atom coordinates and absolute energy levels for 5b optimized in the S_0 state.

5b (S_0 state): E(RB3LYP) = -8224.66074937 a.u.

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.724727</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.724511</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.344423</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.344321</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>-0.000003</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1.271239</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1.270893</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-2.782729</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>2.782628</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.000162</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.000317</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.000086</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.000161</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0.000395</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.000314</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-0.000026</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.000104</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.000378</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.000521</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.000369</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-3.694693</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-3.309679</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-4.681759</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-5.06838</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-5.553643</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-2.635541</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-5.067362</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-3.323212</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-5.754528</td>
</tr>
<tr>
<td>30</td>
<td>35</td>
<td>0</td>
<td>-7.431098</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>3.694661</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>0</td>
<td>3.309534</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>4.6816</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>5.068335</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>5.553541</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.635375</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>5.067153</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>3.323255</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>5.754518</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>0</td>
<td>7.43099</td>
</tr>
</tbody>
</table>
Table S8. Atom coordinates and absolute energy levels for 5c optimized in the S\(_0\) state.

5c (S\(_0\) state): E(RB3LYP) = -3311.37744694 A.U.

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.736145</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-0.71287</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>1.357572</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>-1.34437</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>0</td>
<td>0.002305</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.285782</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>-1.25404</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>2.800477</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-2.7894</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-0.01851</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>-0.02625</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-0.02552</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>-0.03925</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-0.04084</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>-0.04788</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-0.01849</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-0.04457</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-0.02179</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-0.04674</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-0.05924</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>3.67609</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>3.373019</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>4.765585</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>5.04989</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>5.604518</td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>0</td>
<td>2.440794</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>5.190318</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>3.26241</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>5.711344</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>6.66735</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>-3.66805</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>0</td>
<td>-3.36067</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>-4.5457</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>-5.04301</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>-5.59622</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>0</td>
<td>-2.42409</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>-5.17814</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>-3.2561</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>-5.70699</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>-6.66015</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>3.131735</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-3.07486</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>3.728735</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>0</td>
<td>3.776753</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>2.373847</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>-3.50949</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>-3.85364</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0</td>
<td>-2.3135</td>
</tr>
</tbody>
</table>

S23
Table S9. Atom coordinates and absolute energy levels for 5d optimized in the S₀ state.

5d (S₀ state): \(E(\text{RB3LYP}) = -3311.3934798 \) A.U.

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.734052</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.715723</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.351583</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.339139</td>
</tr>
<tr>
<td>5</td>
<td>33</td>
<td>0</td>
<td>0.003061</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1.283172</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1.259272</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-2.789302</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>2.77862</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.00973</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.014711</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.014221</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.023873</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0.024338</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.028723</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0.010506</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.026703</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.011447</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.028286</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.035818</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-3.702015</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-3.701967</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-4.692676</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-5.073898</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-5.577441</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-2.646653</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-5.051451</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-3.331297</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-5.756404</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>0</td>
<td>-7.026483</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>3.692193</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>0</td>
<td>3.309601</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>4.683414</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>5.0649</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>5.568875</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.635279</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>5.04227</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>3.322256</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>5.747598</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>0</td>
<td>7.020836</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>0</td>
<td>7.442552</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>0</td>
<td>-7.450254</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>-7.020176</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>0</td>
<td>-7.130681</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>0</td>
<td>-8.54594</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>0</td>
<td>7.29283</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>0</td>
<td>6.871665</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>0</td>
<td>8.509771</td>
</tr>
</tbody>
</table>

S24
Table S10. Atom coordinates and absolute energy levels for 5e optimized in the S_0 state.

5e (S_0 state): E(RB3LYP) = -3350.34343066 A.U.

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>6</td>
<td>X: -0.72819 Y: -1.96804 Z: 1.128738</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>X: 0.720235 Y: -1.97098 Z: 1.137393</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>X: -1.35085 Y: -1.06895 Z: 0.313603</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6</td>
<td>X: 1.35775 Y: -1.07826 Z: 0.323905</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>33</td>
<td>X: 0.009053 Y: -0.1224 Z: -0.73153</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td>X: -1.27698 Y: -2.68727 Z: 1.73653</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>X: 1.25626 Y: -2.69013 Z: 1.748594</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6</td>
<td>X: -2.78489 Y: -0.87053 Z: 0.141803</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>X: 2.791921 Y: -0.91676 Z: 0.130013</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6</td>
<td>X: -0.0052 Y: 1.616636 Z: 0.179862</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>6</td>
<td>X: 0.06824 Y: 1.750252 Z: 1.571291</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td>X: -0.08009 Y: 2.770427 Z: -0.60996</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6</td>
<td>X: -0.08953 Y: 4.039889 Z: -0.02133</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>6</td>
<td>X: 0.059395 Y: 3.014223 Z: 2.163816</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>6</td>
<td>X: -0.01964 Y: 4.162896 Z: 1.368031</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1</td>
<td>X: -0.13071 Y: 2.681505 Z: -1.6931</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1</td>
<td>X: -0.15081 Y: 4.926853 Z: -0.64754</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>1</td>
<td>X: 0.115067 Y: 3.104388 Z: 3.246277</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1</td>
<td>X: -0.02488 Y: 5.147097 Z: 1.830251</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1</td>
<td>X: -3.71492 Y: -1.24675 Z: 1.133336</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1</td>
<td>X: -3.32135 Y: -0.29114 Z: -1.02351</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1</td>
<td>X: -4.69104 Y: -0.11257 Z: -1.20225</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>1</td>
<td>X: -5.08337 Y: -1.07463 Z: 0.9708</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1</td>
<td>X: -5.61698 Y: -0.48148 Z: -0.19931</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1</td>
<td>X: -2.65401 Y: -0.07111 Z: -1.83204</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1</td>
<td>X: -5.03159 Y: 0.318178 Z: -2.13625</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1</td>
<td>X: -3.35819 Y: -1.67879 Z: 2.064823</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1</td>
<td>X: -5.73707 Y: -1.39039 Z: 1.75765</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>7</td>
<td>X: -6.9872 Y: -0.25779 Z: -0.34751</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6</td>
<td>X: 3.740502 Y: -1.45996 Z: 1.020584</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>6</td>
<td>X: 3.314931 Y: -0.20251 Z: -0.96603</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6</td>
<td>X: 4.680545 Y: -0.0463 Z: -1.17381</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6</td>
<td>X: 5.108861 Y: -1.33058 Z: 0.818618</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6</td>
<td>X: 5.625742 Y: -0.62655 Z: -0.29668</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6</td>
<td>X: 2.631949 Y: 0.231322 Z: -1.69202</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>1</td>
<td>X: 5.004029 Y: 0.521862 Z: -2.03804</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1</td>
<td>X: 3.403445 Y: -1.99317 Z: 1.90597</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>1</td>
<td>X: 5.777055 Y: -1.76822 Z: 1.551288</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>7</td>
<td>X: 6.996165 Y: -0.52688 Z: -0.32817</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>6</td>
<td>X: -7.49818 Y: 0.108521 Z: -1.65905</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>6</td>
<td>X: -7.91453 Y: -0.97897 Z: 0.515777</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>6</td>
<td>X: 7.476373 Y: 0.45805 Z: -1.48743</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>6</td>
<td>X: 7.919065 Y: -0.91107 Z: 0.529882</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>1</td>
<td>X: -7.02191 Y: 1.026482 Z: -2.01739</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>1</td>
<td>X: -7.344 Y: -0.6808 Z: -2.41504</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>1</td>
<td>X: -8.56975 Y: 0.305996 Z: -1.5784</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>1</td>
<td>X: -7.89516 Y: -2.06937 Z: 0.347129</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>1</td>
<td>X: -8.56975 Y: 0.305996 Z: -1.5784</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>0</td>
<td>-7.69467</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>0</td>
<td>-8.92759</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>0</td>
<td>7.054493</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>0</td>
<td>7.230005</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>0</td>
<td>8.561855</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>0</td>
<td>7.824499</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>0</td>
<td>7.760851</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>0</td>
<td>8.941999</td>
</tr>
</tbody>
</table>
Table S11. Atom coordinates and absolute energy levels for 6a optimized in the S_0 state.

6a (S_0 state): E(RB3LYP) = -1189.93745786 A.U.

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>-0.72332</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>-2.08211</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>-1.18715</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.32355</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>0</td>
<td>0.000008</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1.27984</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1.27999</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-2.7583</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-2.758318</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-0.000002</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>-2.3E-05</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-3.6E-05</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>-5.5E-05</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-4.2E-05</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>-5.8E-05</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>-3.6E-05</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-6.8E-05</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>-1.2E-05</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-4.5E-05</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-7.2E-05</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>0</td>
<td>-3.68213</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>0</td>
<td>-3.26519</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>0</td>
<td>-4.63455</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>0</td>
<td>-5.05039</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0</td>
<td>-5.53612</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>-2.57742</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>0</td>
<td>-4.99793</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>0</td>
<td>-3.31891</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>0</td>
<td>-5.73981</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>0</td>
<td>-6.60306</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>0</td>
<td>3.682082</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>0</td>
<td>3.265195</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>0</td>
<td>4.63459</td>
</tr>
<tr>
<td>34</td>
<td>6</td>
<td>0</td>
<td>5.050343</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>0</td>
<td>5.53617</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>0</td>
<td>2.577583</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>0</td>
<td>4.997955</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>0</td>
<td>3.319</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>5.73992</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>0</td>
<td>6.60312</td>
</tr>
</tbody>
</table>
7. References
