Shaping and Enforcing Coordination Spheres: Probing the ability of Tripodal ligands to Favour Trigonal Prismatic Geometry
James C. Knight, Angelo J. Amoroso,* Peter G. Edwards, Neha Singh and Benjamin D. Ward.

Figure 1 a) Perspective view of the asymmetric unit of 9 showing the atom numbering. Displacement ellipsoids are shown at the 50% probability level. H atoms are represented by circles of arbitrary size. b) The core Fe geometry.

Figure 2 a) Perspective view of the asymmetric unit of 10 showing the atom numbering. Displacement ellipsoids are shown at the 50% probability level. b) Core geometry about the Co centre; c) alternative perspective illustrating the distortion from octahedral geometry. The dotted lines define one deltahedral face.
Figure 3 a) Perspective view of the asymmetric unit of 14 showing the atom numbering. Displacement ellipsoids are shown at the 50% probability level; b) Core geometry of the Cd centre; c) alternative perspective demonstrating the trigonal prismatic arrangement.

Fig. 4 Shape map14 showing an interconversion pathway (Berry pseudo-rotation). The three bold circles represent the positions of the ideal geometries (TBPY: trigonal bipyramid, SPY: square pyramid, and VOC: vacant octahedron). The light circle indicates the position of 5