Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts

Ahibur Rahaman, a Carolina Gimbert-Suriñach, b Arne Ficks, c Graham E. Ball, b Mohan Bhadbhade, b Matti Haukka, d Lee Higham, c Ebbe Nordlander, a Stephen B. Colbran b

a. Chemical Physics, Department of Chemistry, Lund University, Box 120, SE-221 00 Lund, Sweden

b. School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia

c. School of Chemistry, University of Newcastle, Newcastle, U.K.

d. Department of Chemistry, University of Jyväskylä, Box 111, FI-40014, Jyväskylä, Finland

Electronic Supporting Information (ESI)
Additional ^1H and $^{31}\text{P}[^1\text{H}]$ NMR spectra and simulations

Experimental. Spectra were simulated using the NUMMRIT module in the SpinWorks (v4.2) program. Note: swapping the shifts of the two P atoms and the sign of the JHH at the same time gives the same results.

2. *SpinWorks 4.2.0*, Copyright © 2015, Kirk Marat, University of Manitoba

a,e-[Fe$_2$(CO)$_6$(μ$_2$-P(PhH)$_2$)], 1a(Ph).

![Figure 1S](attachment:image1.png)

Figure 1S. Experimental (bottom trace) and simulated (top trace) for the P–H region of the 500 MHz ^1H NMR spectrum.

![Figure 2S](attachment:image2.png)

Figure 2S. Experimental $^{31}\text{P}[^1\text{H}]$ spectrum (bottom trace) and its simulation (top trace).
Simulation data.

Groups and chemical shifts:

<table>
<thead>
<tr>
<th>#</th>
<th>name</th>
<th>shift (Hz)</th>
<th>spins</th>
<th>species</th>
<th>spin</th>
<th>sym</th>
<th>shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ha</td>
<td>2778.620</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.560</td>
</tr>
<tr>
<td>2</td>
<td>Hb</td>
<td>1982.512</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.967</td>
</tr>
<tr>
<td>3</td>
<td>Pa</td>
<td>14616.615</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>72.244</td>
</tr>
<tr>
<td>4</td>
<td>Pb</td>
<td>15643.431</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>77.319</td>
</tr>
</tbody>
</table>

Scalar coupling constants: (round up to 1 dec pl)

\[
\begin{align*}
 j[1, 2] &= j[Ha, Hb] = -1.000000 \\
 j[1, 3] &= j[Ha, Pa] = 373.487870 \\
 j[1, 4] &= j[Ha, Pb] = 17.018000 \\
 j[2, 3] &= j[Hb, Pa] = 24.834120 \\
 j[2, 4] &= j[Hb, Pb] = 380.817250 \\
\end{align*}
\]

Linewidth: 3.5 Hz

\[a,e-[\text{Fe}_2(\text{CO})_6\{\mu_2-\text{PH}(R-2'-\text{methoxy-1,1'-'binaphthyl})\}_2], \text{1a(bn')}.\]

Figure 3S. Experimental (bottom trace) and simulated (top trace) for the P–H region of the 500 MHz \(^1\text{H} \text{NMR} \) spectrum.
Figure 4S. Experimental 31P(1H) spectrum (bottom trace) and its simulation (top trace).

Simulation data.

Groups and chemical shifts:

<table>
<thead>
<tr>
<th>#</th>
<th>name</th>
<th>shift (Hz)</th>
<th>spins</th>
<th>species</th>
<th>spin</th>
<th>sym</th>
<th>shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ha</td>
<td>2414.676</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.832</td>
</tr>
<tr>
<td>2</td>
<td>Hb</td>
<td>2140.390</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.283</td>
</tr>
<tr>
<td>3</td>
<td>Pa</td>
<td>12702.067</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>62.781</td>
</tr>
<tr>
<td>4</td>
<td>Pb</td>
<td>12137.683</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>59.992</td>
</tr>
</tbody>
</table>

Scalar coupling constants: (round up to 1 dec pl)

\[j[1, 2] = j[H_a, H_b] = -0.750000 \]
\[j[1, 3] = j[H_a, P_a] = 388.164760 \]
\[j[1, 4] = j[H_a, P_b] = 18.885710 \]
\[j[2, 3] = j[H_b, P_a] = 26.704100 \]
\[j[2, 4] = j[H_b, P_b] = 396.675760 \]
\[j[3, 4] = j[P_a, P_b] = -167.793220 \]

Linewidth: 3.5 Hz
e.e-[Fe₂(CO)₆(µ₂-PHPh)]₂, 1b(Ph).

The \(^1\text{H}\) NMR spectrum was modelled as a AA'XX' system for the two P-H groups with coupling to \textit{ortho} protons of the phenyl substituent; \textit{i.e.}, overall as a AA'(MM')2XX' spin system. There will be some extra small couplings to the \textit{meta} and \textit{para} protons that may broaden the multiplets, but will not change the larger evaluated couplings. The \(^{31}\text{P}(^1\text{H})\) spectrum shows a singlet at 86.4 ppm.

Figure 5S. Experimental (bottom trace) and simulated (top trace) for the P–H region of the 500 MHz \(^1\text{H}\) spectrum.

Simulation data

Groups and chemical shifts:

<table>
<thead>
<tr>
<th>#</th>
<th>name</th>
<th>shift (Hz)</th>
<th>spins</th>
<th>species</th>
<th>spin sym</th>
<th>Shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ha</td>
<td>1738.943</td>
<td>1</td>
<td>1</td>
<td>1 2</td>
<td>3.480 (P-H)</td>
</tr>
<tr>
<td>2</td>
<td>Ho1</td>
<td>3817.990</td>
<td>1</td>
<td>1</td>
<td>1 2</td>
<td>ortho protons</td>
</tr>
<tr>
<td>3</td>
<td>Ho2</td>
<td>3817.990</td>
<td>1</td>
<td>1</td>
<td>1 2</td>
<td>ortho protons</td>
</tr>
<tr>
<td>4</td>
<td>Pb</td>
<td>15643.431</td>
<td>1</td>
<td>2</td>
<td>1 2</td>
<td>86.4 (31P)</td>
</tr>
</tbody>
</table>

Scalar coupling constants:

- \(j[1,1] = j[\text{Ha,Ha}] = 1.500000\) (approx.; < 2Hz)
- \(j[1,2] = j[\text{Ha,Ho1}] = 0.000000\) (4 bonds not fitted)
- \(j[1,3] = j[\text{Ha,Ho2}] = 0.000000\)
- \(j[1,4] = j[\text{Ha,Pb}] = 371.050000\)
- \(j[2,1] = j[\text{Ho1,Ha}] = 0.000000\)
- \(j[2,2] = j[\text{Ho1,Ho1}] = -1.500000\) (4 bonds, not fitted, and makes no difference)
- \(j[2,3] = j[\text{Ho1,Ho2}] = 0.000000\)
- \(j[2,4] = j[\text{Ho1,Pb}] = 0.000000\)
- \(j[3,1] = j[\text{Ho2,Ha}] = 0.000000\)
- \(j[3,2] = j[\text{Ho2,Ho1}] = 0.000000\)
- \(j[3,3] = j[\text{Ho2,Ho2}] = -1.500000\)
- \(j[3,4] = j[\text{Ho2,Pb}] = 14.000000\)
$j[4, 1] = j[\text{Pb, Ha}] = 31.580000$

$j[4, 2] = j[\text{Pb, Ho1}] = 14.000000$

$j[4, 3] = j[\text{Pb, Ho2}] = 0.000000$

$j[4, 4] = j[\text{Pb, Pb}] = -129.750000$

e,e-[Fe$_2$(CO)$_6$(μ_2-PH(R-2′-methoxy-1,1′-binaphthyl))$_2$], 1b(bn′).

The methoxybinaphthyl group was modelled as a substituted phenyl group with one ortho proton (Ho, 7.83 ppm) and one meta proton (Hm, 7.94 ppm)

Figure 6S. Experimental (bottom trace) and simulated (top trace) of the 500 MHz 1H spectrum of e,e-[Fe$_2$(CO)$_6$(μ_2-PHPh)$_2$], 1b(bn′): (a) the P–H region, (b) part of aryl region (the peak at 7.88 ppm was not required for the simulation in the P–H region).
Simulation data

Groups and chemical shifts:

<table>
<thead>
<tr>
<th></th>
<th>name</th>
<th>shift (Hz)</th>
<th>spins</th>
<th>species spin</th>
<th>sym</th>
<th>atom type, shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ha</td>
<td>1250.756</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>P-Ha, 2.0841 ppm</td>
</tr>
<tr>
<td>2</td>
<td>Ho</td>
<td>4699.200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ortho protons, 7.8303 ppm</td>
</tr>
<tr>
<td>3</td>
<td>Hm</td>
<td>4762.418</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>meta protons, 7.9356 ppm</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>46510.331</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>31P, 77.5 ppm</td>
</tr>
</tbody>
</table>

Scalar coupling constants (Hz):

- $j[1, 1] = j[Ha,Ha] = 0.500000$ (approx. Say < 2Hz)
- $j[1, 2] = j[Ha,Ho] = 0.500000$ (approx. Say < 2Hz)
- $j[1, 3] = j[Ha,Hm] = 0.000000$
- $j[1, 4] = j[Ha,P] = 391.280000$ 1J P-Ha
- $j[2, 1] = j[Ho,Ha] = 0.000000$
- $j[2, 2] = j[Ho,Ho] = 0.000000$
- $j[2, 3] = j[Ho,Hm] = 8.680000$ (3J Ho-Hm))
- $j[2, 4] = j[Ho,P] = 11.820000$ 3J P-Ho
- $j[3, 1] = j[Hm,Ha] = 0.000000$
- $j[3, 2] = j[Hm,Ho] = 0.000000$
- $j[3, 3] = j[Hm,Hm] = 0.000000$
- $j[3, 4] = j[Hm,P] = 1.700000$ 4J P-Hm
- $j[4, 2] = j[P,Ho] = 0.000000$
- $j[4, 3] = j[P,Hm] = 0.000000$

additional Figures From Electrochemical Studies

Figure 7S. CV of dimer $a_e-[Fe_2(CO)_6(\mu_2-\text{PHPh})_2], \text{1a(Ph)},$ with extended potential range recorded at $v = 100 \text{ mV s}^{-1}.$ All other conditions are identical to those listed in the caption to Figure 7 in the paper.
Figure 8S. CVs of $e,e-[\text{Fe}_2(\text{CO})_6(\mu_2-\text{PHPh})_2]$, 1b(Ph), at different scan rates: $v = 100, 200, 400, 800, 1600$ mVs$^{-1}$ with other conditions as in Figure 7 in paper. The inset shows a plot of i_p versus $v^{1/2}$ for peak R1.

Figure 9S. Electrocatalysis of proton reduction: CVs of $e,e-[\text{Fe}_2(\text{CO})_6(\mu_2-\text{PHPh})_2]$, 1b(Ph), (1.0 mM) and added TsOH. Inset: Current data for the catalytic wave C2 versus equiv. of acid.
Figure 10. Electrocatalysis of proton reduction: CVs of $a_i-[Fe_2(CO)_6(μ_2-P(bn')H)]_2 \ 1a(bn')$ (1.0 mM) and added TsOH. Inset: Catalytic current ratio data for the catalytic wave C_2 versus equiv. of added acid.

Figure 11. Electrocatalysis of proton reduction: CVs of $e,e-[Fe_2(CO)_6(μ_2-P(bn')H)]_2, \ 1b(bn')$, (1.0 mM) and added TsOH. Inset: Catalytic current ratio data for the catalytic wave C_2 versus equiv. of added acid.
Further spectra from studies of $[\text{Fe}_2(\text{CO})_6(\mu-1,2-\{\text{FcCH}_2\text{PCH}_2\}_2\text{C}_6\text{H}_4)]$ (4)

Figure 12S. Spectra from a variable temperature 400 MHz 1H NMR study of 4 in benzene-d_6.

Figure 13S. CVs of 4 (1.3 mM) in THF$-[(n-$Bu)$_4$N][PF$_6$] (0.4 M) showing the effect of switching before the second reduction process ($R2^*$); all other conditions as for Fig 7 in the paper.
Figure 14S. a) 1H NMR spectrum of 4 (bottom trace) and product(s) generated upon reduction of 4 with a Na mirror (top trace) in THF-d_8 (400 MHz, 298 K); b) 31P(1H) NMR spectrum of products generated after reduction of 4 with a Na mirror in THF-d_8 (161.9 MHz, 298 K).
Figure 15S. a) Simulated CV of 4 using DigiElch 6.F software and the following input parameters: [4] = 2.6 mM, D = 10^{-5} cm^2 s^{-1}; 100 mV s^{-1}; A(electrode planar) = 0.0078 cm^2; E (4/4-) = -2.00 V, α = 0.45, k_s = 3.5x10^{-4} cm s^{-1}; K_{eq}^1 = 5 \times 10^4 and k_f = 1; E ([4-]'/42-) = -1.52 V, α = 0.86, k_s = 4x10^{-5} cm s^{-1}; K_{eq}^2 = 2.59 \times 10^3 and k_f = 10^3; E (42+/4) = 0.03 V, α = 0.5, k_s = 10^{-1} cm s^{-1}; b) Mechanism used in simulation of the electrochemistry of 4.
Figure 165. (a) CVs of 4 (1.3 mM) with added TsOH in tetrahydrofuran–0.4 M [Bu₄N][PF₆]; \(\nu = 100 \text{ mV s}^{-1} \), other conditions as in Figure 7. The black diamonds indicate the peaks \(C1 \) and the red asterisks indicate peaks \(C2 \). (b) CVs TsOH in tetrahydrofuran–0.4 M [Bu₄N][PF₆] in the absence and presence of 4.
Electrocatalysis using [Fe₂(CO)₆(μ-P(CH₂Fc)H)₂] **and** [Fe₂(CO)₆(μ-P(CH₂Fc)Me)₂]

Figure 175. Plots of catalytic current ratio against equiv. of added acid for [Fe₂(CO)₆(μ-P(CH₂Fc)H)₂] (top) and [Fe₂(CO)₆(μ-P(CH₂Fc)Me)₂] (bottom) using data taken from Figure 7 in Gimbert-Suriñach *et al.* *Organometallics* 2012, 31, 3480-3491.