Electronic Supplementary Information

An anionic zeolite-like metal-organic framework (AZMOF) with Moravia network for organic dyes absorption through cation-exchange

Yu Shen, Cong-Cong Fan, Yu-Zhen Wei, Jie Du, Hai-Bin Zhu, and Yue Zhao

*S School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 China. E-mail: zhuhaibin@seu.edu.cn

*Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China. E-mail: zhaoyue@nju.edu.cn
Fig. S1 FT-IR spectra of H$_3$BTTC

Fig. S2 FT-IR spectra of Sr-BTTC
Fig. S3 FT-IR spectra of desolvated Sr-BTTC samples.

Fig. S4 PXRD pattern of Sr-BTTC
Fig. S5 TG curve of Sr-BTTC: The weight loss before 100 °C is contributed by the guest solvents, when the temperature was raised above 120 °C a substantial mass reduction was observed, which is possibly resulted by removal of coordinated water and terthienobenzene unit as the consequence of BTTC decarboxylation.[1]

Fig. S6 N₂ sorption isotherm for Sr-BTTC recorded at 77K.
Fig. S7 The absorption intensity (black dots) of MB dye at different concentrations (mol/L) (The red solid line represents the best linear fit.)

\[Y = 0.3324X - 0.052 \]
\[R^2 = 0.9977 \]

Fig. S8 The absorption intensity (black dots) of BR2 dye at different concentrations (mol/L) (The red solid line represents the best linear fit.)

\[Y = 0.7643X - 0.665 \]
\[R^2 = 0.995 \]
Fig. S9 The absorption intensity (black dots) of RB dye at different concentrations (mol/L) (The red solid line represents the best linear fit)

\[Y = 4.04X - 0.56 \]
\[R^2 = 0.999 \]

Fig. S10 The absorption intensity (black dots) of CV dye at different concentrations (mol/L) (The red solid line represents the best linear fit)

\[Y = 1.00X + 0.078 \]
\[R^2 = 0.993 \]
Fig. S11 The UV-Vis absorption change of AO7 in the presence of Sr-BTTC

Fig. S12 The UV-Vis absorption change of CR in the presence of Sr-BTTC
Fig. S13 The UV-Vis absorption change of CR in the presence of Sr-BTTC.

Fig. S14 Removal efficiency of MB in the presence of the Sr-BTTC with increasing time.
Fig. S15 Removal efficiency of BR2 in the presence of the Sr-BTTC with increasing time.

Fig. S16 Removal efficiency of RB in the presence of the Sr-BTTC with increasing time.
Fig. S17 Removal efficiency of CV in the presence of the Sr-BTTC with increasing time.

Fig. S18 PXRD patterns of as-synthesized Sr-BTTC, activated Sr-BTTC and dye-absorbed Sr-BTTC.
<table>
<thead>
<tr>
<th>Table S1 Crystal data and structure refinements for Sr-BTTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
</tr>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>Crystal size(mm)</td>
</tr>
<tr>
<td>T/K</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>a (Å)</td>
</tr>
<tr>
<td>b (Å)</td>
</tr>
<tr>
<td>c (Å)</td>
</tr>
<tr>
<td>α (º)</td>
</tr>
<tr>
<td>β (º)</td>
</tr>
<tr>
<td>γ (º)</td>
</tr>
<tr>
<td>V (Å3)</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>D_c (g.cm$^{-3}$)</td>
</tr>
<tr>
<td>F(000)</td>
</tr>
<tr>
<td>Theta range/º</td>
</tr>
<tr>
<td>Reflections collected</td>
</tr>
<tr>
<td>Unique reflections</td>
</tr>
<tr>
<td>Goof</td>
</tr>
<tr>
<td>R_1 [I > 2σ(I)]</td>
</tr>
<tr>
<td>wR_2 [I > 2σ(I)]</td>
</tr>
</tbody>
</table>

a $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. b $wR_2 = \Sigma w(|F_o|^2 - |F_c|^2)^2/\Sigma w(F_o^2)^2)^{1/2}$,
where $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$. $P = (F_o^2 + 2F_c^2)/3$.

Table S2 The adsorption capacity for BR on various adsorbents.

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Adsorption capacity (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-BTTC</td>
<td>675</td>
<td>This work</td>
</tr>
<tr>
<td>PET depolymerization products</td>
<td>29</td>
<td>Clean-Soil Air Water., 2012, 40, 325-333</td>
</tr>
<tr>
<td>Calcite</td>
<td>37.2</td>
<td>Separ. Sci. Technol., 2010, 45, 1471-1481</td>
</tr>
<tr>
<td>HT-SDBS</td>
<td>40.5</td>
<td>J. Hazard. Mater., 2008, 153, 911-918</td>
</tr>
<tr>
<td>HT-SDS</td>
<td>83.3</td>
<td>J. Hazard. Mater., 2008, 153, 911-918</td>
</tr>
<tr>
<td>G-SO3H/Fe3O4</td>
<td>199.3</td>
<td>Clean-Soil Air Water., 2013, 41, 992-1001</td>
</tr>
</tbody>
</table>
Olive stone 526.3
J. Hazard. Mater., 2009, **163**, 441-447

N-Vinyl 2-pyrrolidone/itaconic acid/organo clay nanocomposite hydrogel 550.0
Water Air Soil Pollut., 2013, **224**, 1760-1775

Treated spent bleaching earth 555.6
J. Colloid Interface Sci., 2007, **307**, 9-16

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Adsorption capacity (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr-BTTC</td>
<td>545</td>
<td>This work</td>
</tr>
<tr>
<td>TA-G</td>
<td>201</td>
<td>Colloids Surf. A, 2015, 477, 35–41</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>46.08</td>
<td>Appl. Clay Sci., 2012, 69, 58-66</td>
</tr>
<tr>
<td>Coconut (Cocos nucifera)</td>
<td>71</td>
<td>J. Hazard. Mater., 2008, 158, 65-72</td>
</tr>
<tr>
<td>Rice husk ash</td>
<td>13.76</td>
<td>J. Environ. Manage., 2007, 84, 390-400</td>
</tr>
</tbody>
</table>

Table S3 The adsorption capacity for RB on various adsorbents.

Reference: