SUPPLEMENTARY INFORMATION

MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitor

Guo-Chang Li, a Peng-Fei Liu, a Rui Liu, b Minmin Liu, b Kai Tao, a Shuai-Ru Zhu, a Meng-Ke Wu, a Fei-Yan Yi a and Lei Han a,c

a State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China

b Ministry of Education Key Laboratory of Advanced Civil Engineering Material, College of Materials Science and Engineering, and Institute for Advanced Study, Tongji University, Shanghai, 201804, , China

c Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China

* Corresponding Author. Tel: +86-574-87600782; Email: hanlei@nbu.edu.cn
Fig. S1. FT-IR spectrum of MOF precursor

Fig. S2. XRD patterns of the MOF precursor
Fig. S3. SEM of MOF precursor. (a,b) 1.5h; (c,d) 6h; (e,f) 12h.

Fig. S4. The TGA curve of MOF precursor.
Fig. S5. CV curves of MOF precursor electrode at different scan rates; (b) GCD curves of MOF precursor electrode at different current densities; (c) The corresponding specific capacitance of MOF precursor electrode calculated by the GCD curves; (d) Cycle performance of MOF precursor electrode at the current density of 5.2 A g\(^{-1}\) for 400 cycles.