Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high removal efficiency on copper ions from aqueous solutions

Yujie Zhang, a,† Zhiqiang Xie, b,† Zhuqing Wang, a,c Xuhui Feng, d Ying Wang, b,⁎ Aiguo Wu a,⁎

a Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

b Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.

c Department of Chemistry, Anqing Normal College, Anqing, China.

d Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.

⁎Corresponding author. Tel.: +86-574-86685039, Fax: +86-574-86685163, E-mail: aiguo@nimte.ac.cn, ywang@lsu.edu.

† These authors contributed equally to this work.
Fig. S1 The stability of ZIF-8 in the aqueous solutions with the pH values ranging from 2 to 6.
Fig. S2 N$_2$ adsorption-desorption isotherms of ZIF-8.
Fig. S3 Color change in the process of Cu$^{2+}$ adsorption.
Fig. S4 Typical SEM image of ZIF-8 nanoparticles.