Stimuli-Responsive Metal-Directed Self-Assembly of a Ring-in-Ring.

Cristina Alvariño,⁺ Carlos Platas-Iglesias,⁺ Víctor Blanco,[‡] Marcos D. García,^{+*} Carlos Peinador,^{+*} and José M. Quintela⁺.

⁺ Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, E-15071 A Coruña, Spain.

[‡]Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain

- Electronic Supplementary Information -

General	4
Experimental Procedures	4
- 1-(2.4-Dinitrophenyl)-4-(4-(nyridin-4-yl)phenyl)pyridin-1-ium chloride (1Cl)	
A (A (Derridin A v)) = (1 (pyrtain yyperhyp) (pyrtain 1 fam chorad (1 c)) (mathematical v) (pyrtain 1 (pyrtain 1 fam chorad (1 c))) (pyrtain 1 (pyrtain 1 fam chorad (1 c))))	
4-(4-(Pyriain-4-yi)pnenyi)-1-(4-(pyriain-4-yimetnyi)pnenyi)pyriain-1-ium mitrate (L'NO ₃)	
1-(2,4-Dinitrophenyl)-4-(4'-(pyridin-4-yl)-[1,1'-biphenyl]-4-yl)pyridin-1-ium chloride (2Cl)	6
4-(4'-(Pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-1-(pyridin-4-ylmethyl)pyridin-1-ium hexafluorophosphate	e (LPF ₆)
	6
4-(4'-(Pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-1-(pyridin-4-ylmethyl)pyridin-1-ium nitrate (LNO ₃)	7
Metallacycle Pd ₂ L ₂ [PF ₆] ₂ [OTf] ₄	7
Ring-in-ring [Pd ₄ L ₄](NO ₃) ₁₂	7
[Pt ₄ L ₄](NO ₃) ₁₂ and [Pt ₂ L ₂](NO ₃) ₆	
Host-guest complex of [Pt.L_](NO_), with 1.5-bis[2-(hydroxyethoxy)ethoxy]naphthalene	
	0
Figure S1 ¹ H NMR (500 MHz D O) spectrum of 1C1	9
Figure S2 ¹ H NMR (500 MHz, D_2O) spectrum of I 2NO	9
Figure S2 ¹¹ NMR (500 MHz, CD OD) spectrum of L 10 NO	
Figure S4 COSY (500 MHz, CD OD) spectrum of L'NO	10
Figure S5 HSOC (500 MHz, CD,OD) spectrum of L'NO.	
Figure S6 HMBC (500 MHz, CD ₃ OD) spectrum of L ² NO ₂	
Figure S7 ¹ H NMR (500 MHz, CD ₂ CN) spectrum of L 2PE ₂	
Figure S8 ¹³ C NMR (125 MHz, CD ₂ CN) spectrum of L'PE.	12
Figure S9 COSY (500 MHz, CD ₂ CN) spectrum of L'PF ₆	
Figure S10 HSOC (500 MHz, CD ₂ CN) spectrum of L ² PF ₄	
Figure S11 HMBC (500 MHz, CD ₂ CN) spectrum of $L^{2}PE_{e}$	
Figure S12 ¹ H NMR (500 MHz, D_2O) spectrum of [Pd₂L'₂](NO₃) ₆	
Figure S13 ¹³ C NMR (125 MHz, D_2O) spectrum of [Pd ₂ L' ₂](NO ₃) ₆	
Figure S14 COSY (500 MHz, D_2O) spectrum of [Pd ₂ L' ₂](NO ₃) ₆	
Figure S15 HSCQ (500 MHz, D_2O) spectrum of $[Pd_2L'_2](NO_3)_6$	16
Figure S16 HMBC (500 MHz, D_2O) spectrum of [Pd ₂ L' ₂](NO ₃) ₆	16
Figure S17 ¹ H NMR (500 MHz, CD ₃ NO ₂) spectrum of $[Pd_2L'_2](PF_6)_6$	17
Figure S18 ¹³ C NMR (125 MHz, CD ₃ NO ₂) spectrum of $[Pd_2L'_2](PF_6)_6$	17
Figure S19 COSY (500 MHz, CD ₃ NO ₂) spectrum of [Pd ₂ L' ₂](PF ₆) ₆	
Figure S20 HSQC (500 MHz, CD ₃ NO ₂) spectrum of [Pd ₂ L' ₂](PF ₆) ₆	
Figure S21 HMBC (500 MHz, CD ₃ NO ₂) spectrum of [Pd ₂ L' ₂](PF ₆) ₆	19
Figure S22 ¹ H NMR (500 MHz, CD ₃ CN) spectrum of 2 Cl	20
Figure S23 ¹ H NMR (500 MHz, CD ₃ CN) spectrum of LPF ₆	
Figure S24 ¹³ C and DEPT NMR (125 MHz, CD ₃ CN) spectrum of LPF ₆	21
Figure S25 COSY (125 MHz, CD ₃ CN) spectrum of LPF ₆	21
Figure S26 HSQC (125 MHz, CD ₃ CN) spectrum of LPF ₆	
Figure S27 HMBC (125 MHz, CD ₃ CN) spectrum of LPF ₆	
Figure S28 ¹ H NMR (500 MHz, D ₂ O) spectrum of LNO ₃	23
Figure S29 13 C and DEPT NMR (125 MHz, D ₂ O) spectrum of LNO ₃	23
Figure S30 ¹ H NMR (125 MHz, CD ₃ OD) spectrum of LNO ₃	24
Figure S31 ¹³ C and DEPT NMR (125 MHz, CD ₃ OD) spectrum of LNO ₃	24
Figure S32 COSY (125 MHz, D ₂ O) spectrum of LNO ₃	25
Figure S33 HSQC (125 MHz, D_2O) spectrum of LNO_3	25

Index

Figure S34 HMBC (125 MHz, D ₂ O) spectrum of LNO ₃	
Figure S35 HMBC (125 MHz, CD ₃ OD) spectrum of LNO ₃	
Figure S36 ¹ H NMR (500 MHz, CD_3NO_2) spectrum of $[Pd_2L_2](PF_6)_6$	
Figure S37 ¹³ C and DEPT NMR (125 MHz, CD ₃ NO ₂) spectrum of [Pd ₂ L ₂](PF ₆) ₆	
Figure S38 COSY (125 MHz, CD ₃ NO ₂) spectrum of [Pd ₂ L ₂](PF ₆) ₆	
Figure S39 HSQC (125 MHz, CD ₃ NO ₂) spectrum of [Pd ₂ L ₂](PF ₆) ₆	
Figure S40 HMBC (125 MHz, CD_3NO_2) spectrum of $[Pd_2L_2](PF_6)_6$	
Figure S41 ¹ H NMR (500 MHz, D_2O/CD_3OD) spectrum of $[Pd_2L_2](NO_3)_6$	
Figure S42 ¹³ C and DEPT NMR (125 MHz, D ₂ O/CD ₃ OD) spectrum of [Pd ₂ L ₂](NO ₃) ₆	
Figure S43 COSY (125 MHz, D_2O/CD_3OD) spectrum of $[Pd_2L_2](NO_3)_6$	
Figure S44 HSQC (125 MHz, D ₂ O/CD ₃ OD) spectrum of [Pd ₂ L ₂](NO ₃) ₆	
Figure S45 HMBC (125 MHz, D ₂ O/CD ₃ OD) spectrum of [Pd ₂ L ₂](NO ₃) ₆	
Figure S46 ¹ H NMR (500 MHz, D_2O) spectrum of [Pd ₂ L ₂](NO ₃) ₆	
Figure S47 ¹ H NMR (500 MHz, D_2O) spectrum of [Pd ₂ L ₂](NO ₃) ₆ at 363K	
Figure S48 ¹ H NMR (500 MHz, D_2O) spectrum of [Pd ₄ L ₄](NO ₃) ₁₂	
Figure S49 ¹³ C and DEPT NMR (125 MHz, D ₂ O) spectrum of [Pd ₄ L ₄](NO ₃) ₁₂	
Figure S50 COSY (125 MHz, D_2O) spectrum of $[Pd_4L_4](NO_3)_{12}$	
Figure S51 HSQC (125 MHz, D_2O) spectrum of $[Pd_4L_4](NO_3)_{12}$	
Figure S52 HMBC (125 MHz, D ₂ O) spectrum of [Pd₄L₄](NO₃) ₁₂	
Figure S53 ¹ H NMR (500 MHz, D ₂ O) spectrum of BHEEN⊂[Pd₂L₂](NO₃) ₆	
Figure S54 ¹³ C and DEPT NMR (125 MHz, D ₂ O) spectrum of BHEEN⊂[Pd₂L₂](NO₃)₆	
Figure S55 COSY (125 MHz, D ₂ O) spectrum of BHEEN⊂[Pd,L₂](NO₃) ₆	
Figure S56 HSOC (125 MHz, D ₂ O) spectrum of BHEEN \subset [Pd ₂ L ₂](NO ₂),	
Figure S57 HMBC (125 MHz, $D_{2}O$) spectrum of BHEENC [Pd.L _1](NO _2).	37
Figure S58 ¹ H NMR (500 MHz D_{2} O) spectrum of [Pt L](NO ₂).	38
Figure S50 ¹ H NMR (500 MHz, D_2O) spectrum of [Pt J _4](100_{3}) ₁₂ .	38
Figure S60 ¹ H NMR (500 MHz, D_2O) spectrum of equimolar solution of LNO ₂ and (en)Pd(NO ₂).	10 mM
b) 2 mM : (c) 1.5 mM : (d) 0.125 mM .	
Figure S61 ¹ H NMR (500 MHz, D_2O) spectrum of [Pd.L.](NO ₂) _{1-at} : a) 298K: b) 313K: c) 343K: d) 363K39
Figure S62 Partial ¹ H NMR (500 MHz, D_2O) spectrum of a solution of [Pd.L4](NO ₂) ₁₂ in D_2O (0.6	mL) after
addition of a) 0 μ L of CD ₂ OD: b) 200 μ L of CD ₂ OD: c) 300 μ L of CD ₂ OD: d) 600 μ L of CD ₂ OD.	
Figure S63 Partial ¹ H NMR (500 MHz, D ₂ O) spectra of: a) [Pt_L](NO ₂) ₁₂ (8 mM): b) solution a) at	ter dilution
to 0.8 mM .	
Figure S64 ¹ H NMR (500 MHz, D_2O) spectrum of a) [Pt,L ₃](NO ₃) ₁₂ ; b) [Pt,L ₄](NO ₃) ₁₂ after addition	on of
BHEEN: c) $[\mathbf{Pd}_{\mathbf{L}_{\mathbf{J}}}](\mathbf{NO}_{\mathbf{J}_{\mathbf{J}_{\mathbf{J}}}})$ after addition of BHEEN .	
Figure S65 Partial ¹ H NMR (500 MHz, D ₂ O/CD ₂ OD, $1/1 \text{ v/v}$) spectrum of [Pd,L ₂](NO ₃) ₆ after addi	tion of: a)
0 mg NaNO_3 ; b) 1 mg NaNO ₂ (20 mM), c) 2 mg NaNO ₂ (40 mM)	
Figure S66 Partial ¹ H NMR (500 MHz, D ₂ O) spectrum of: a) $[\mathbf{Pd}_{4}\mathbf{L}_{4}](\mathbf{NO}_{3})_{12}$; b) $[\mathbf{Pt}_{4}\mathbf{L}_{4}](\mathbf{NO}_{3})_{12}$; c)	
$[Pd_{2}L_{2}](NO_{3})_{\epsilon}: d) [Pt_{2}L_{2}](NO_{3})_{\epsilon}.$	
Figure S67 ¹ H NMR (500 MHz, D_2O) spectrum of a) [Pd.L4](NO ₂) ₁₂ ; b) [Pt.L4](NO ₂) ₁₂ ; c) [Pd.L4]	$(NO_3)_c$
after dilution of $[\mathbf{Pd}_{4}\mathbf{L}_{4}](\mathbf{NO}_{3})_{12}$; d) $[\mathbf{Pt}_{5}\mathbf{L}_{2}](\mathbf{NO}_{3})_{4}$ after dilution of $[\mathbf{Pt}_{4}\mathbf{L}_{4}](\mathbf{NO}_{3})_{12}$; d) $[\mathbf{Pt}_{5}\mathbf{L}_{2}](\mathbf{NO}_{3})_{4}$	
Figure S68 A view of the crystal structure of $[Pt_1L'_2](PF_6)_6$ showing 50% probability displacement	ellipsoids.
Solvent molecules, counteranions, and H atoms are omitted for clarity	
Table 1 X-ray Crystallographic Experimental Data of [Pt,L',](PF _c).	
Figure S69 SASA for (from left to right) BiPh , Pd_3L_2 , Pd_4L_4 (catenane), Pd_4L_4 (ring-in-ring). Only	the BiPh
units of the calculated structures were taken into account.	
Computational Methods	
$[Pd_2L_2]^{vr}$, M06/LanL2DZ/6-31G(d,p), aqueous solution.	
$[\mathbf{Pd}_{4}\mathbf{L}_{4}]^{12+}$, [2]catenane, M06/LanL2DZ/6-31G(d,p), aqueous solution	
[Pd ₄ L ₄] ¹¹⁺ , ring-in-ring, M06/LanL2DZ/6-31G(d,p), aqueous solution	

General

Pd and Pt complexes¹, 4,4'-di(pyridin-4-yl)-1,1'-biphenyl², and 1,5-bis[2-(hydroxyethoxy)ethoxy] naphthalene³ (**BHEEN**) were prepared according to literature procedures. All other reagents used were commercial grade chemicals from freshly opened containers. Milli-Q water was purified with a Millipore Gradient A10 apparatus. Merck 60 F254 foils were used for thin layer chromatography, and Merck 60 (230-400 mesh) silica gel was used for flash chromatography. Proton and carbon nuclear magnetic resonance spectra were recorded on a Bruker Avance 300 or a Bruker Avance 500 spectrometer equipped with a dual cryoprobe for ¹H and ¹³C, using the deuterated solvent as lock and the residual protiated solvent as internal standard. Mass spectrometry experiments were carried out in a LCQ-q-TOF Applied Biosystems QSTAR Elite spectrometer for low- and high-resolution ESI. SASA and BSASA were calculated using Chimera software.⁴ Microwave-assisted reactions were carried out in an Anton Paar Monowave 300 reactor in a sealed reaction vial. The reaction mixture temperature was monitored via built-in IR sensor.

Experimental Procedures

A solution of 1,4-di(pyridin-4-yl)benzene (0.15 g, 0.64 mmol) in EtOH (20 mL) was heated at 60 °C until complete solubilization was observed, then 1-chloro-2,4-nitrobenzene (0.091 g, 0.45 mmol) was added and the mixture was refluxed for 12 h. After cooling, the solvent was removed under reduced pressure and CH₂Cl₂ (10 mL) was added. The solid in suspension was filtered and triturated with water/MeOH (8:2, 30 mL) to yield 1Cl (184 mg, 93%). ¹H NMR (500 MHz, D₂O) δ 9.30 (d, *J* = 2.5 Hz, 1H), 9.00 (d, *J* = 7.0 Hz, 2H), 8.86 (dd, *J* = 8.6, 2.5 Hz, 1H), 8.51 (d, *J* = 7.0 Hz, 4H), 8.17 (d, *J* = 8.6 Hz, 1H), 8.08 (d, *J* = 8.5 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 6.3 Hz, 2H). HRMS (ESI) (*m*/*z*) calcd. for [1-Cl]⁺ 399.1093, found 399.1084.

4-(4-(Pyridin-4-yl)phenyl)-1-(4-(pyridin-4-ylmethyl)phenyl)pyridin-1-ium nitrate (L'NO₃)

A solution of 1Cl (184 mg, 0.423 mmol) and 4-(pyridin-4-ylmethyl)aniline (156 mg, 0.846 mmol) in EtOH (25 mL) was refluxed for 48 h. After the solution was cooled, the solvent was removed in vacuum to leave a solid

¹ (en)Pd(NO₃)₂ a) Drew, H. D. K.; Pinkard, F. W.; Preston, G. H.; Wardlaw. W. J.; *Chem. Soc.* **1932**, 1895. (en)Pt(NO₃)₂. b) Popov, L. V.; Zheligovskaya, N. N.; Grevtsev, A. M.; Kharina, E. A.; Spitsyn, V. I.; *Seriya Khimicheskaya* **1977**, *7*, 1677; c) Fujita, M.; Yazaki, J.; Ogura, K.; *Chem. Lett.* **1991**, 1031.

² Biradha, K.; Hongo Y. Fujita M.; Angew. Chem. Int. Ed.; 2000, 39, 3843-3845.

³ Amabilino, D. B.; Anelli, P. L.; Ashton, P. R.; Brown, G. R.; Córdova, E.; Godínez, L. A.; Hayes, W.; Kaifer, A. E.; Philp, D.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Williams, D. J. J. Am. Chem. Soc. **1995**, *117*, 11142.

⁴ Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. *J. Comput. Chem.* **2004**, *25*, 1605.

residue, which was subjected to flash chromatography (SiO₂, CH₃CN/NaCl (0.6 M)/ MeOH 4:1:1). The ligand containing fractions were combined, evaporated, and dissolved in water (50 ml) and the yellow solid in suspension was filtered. This solid was redissolved in the minimum of ammount of MeOH and an excess of KPF₆ was added. Water was added to this solution and the yellow precipitated formed was filtered and washed with water to yield L'PF₆ (189 mg, 82%). ¹H NMR (500 MHz, CD₃CN) δ 8.95 (d, J = 7.1 Hz, 2H), 8.75 (d, J = 5.1 Hz, 2H), 8.56 (br s, 2H), 8.50 (d, *J* = 7.1 Hz, 2H), 8.19 (d, *J* = 8.6 Hz, 2H), 8.06 (d, *J* = 8.6 Hz, 2H), 7.76 (d, *J* = 6.2 Hz, 2H), 7.71 (d, *J* = 8.6 Hz, 2H), 7.63 (d, *J* = 8.6 Hz, 2H), 7.31 (d, *J* = 6.1 Hz, 2H), 4.19 (s, 2H). A mixture of L'PF₆ (189 mg, 0.347 mmol) and Amberlite CG-400 (0.3 g) was suspended into water/Methanol (1:1, 40 mL) and stirred for 12 h. The resin was removed by filtration and the solvent was removed under reduced pressure to yield L'Cl (114 mg, 75%). A solution of L'Cl (113 mg, 0.259) and AgNO₃ (44 mg, 0.259 mmol) in EtOH/water 1:1 (50 mL) was stirred at room temperature for 12 h with exclusion of light. The mixture was filtered and the filtrate was evaporated in vacuum to yield L'NO₃ (117 mg, 98%). ¹H NMR (500 MHz, CD₃OD) δ 9.25 (d, J = 7.1 Hz, 2H), 8.70 (d, J = 6.2 Hz, 2H), 8.65 (d, J = 7.1 Hz, 2H), 8.49 (d, J = 6.2 Hz, 2H), 8.30 (d, J= 8.6 Hz, 2H), 8.12 (d, J = 8.6 Hz, 2H), 7.88 (d, J = 6.4 Hz, 2H), 7.85 (d, J = 8.6 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 6.2 Hz, 2H), 4.26 (s, 2H). ¹³C NMR (125 MHz, CD₃OD) δ 156.36 (C), 150.74 (C), 149.56(CH), 148.92 (CH), 147.50 (C), 144.40 (CH), 143.50 (C), 141.58 (C), 141.24 (C), 134.39 (C), 131.02 (CH), 128.95 (CH), 128.24 (CH), 121.95 (CH), 39.88 (CH₂). HRMS (ESI) (m/z): calcd for [L'-PF₆]⁺ 400.1808, found 400.1818.

Metallacycle [Pd₂L'₂](PF₆)₂(OTf)₄

An equimolar solution (10 mM) of complex (en)Pd(OTf)₂ and L'PF₆ in CD₃NO₂ (1.2 mL) was prepared. The compound was not isolated; data are taken from measurements on the reaction mixture. ¹H NMR (500 MHz, CD₃NO₂) δ 8.93 (d, J = 6.8 Hz, 4H), 8.88 (d, J = 7.0 Hz, 4H), 8.83 (d, J = 6.8 Hz, 4H), 8.44 (d, J = 7.1 Hz, 4H), 8.12 (d, J = 8.6 Hz, 4H), 7.98 (d, J = 8.6 Hz, 4H), 7.90 (d, J = 6.9 Hz, 4H), 7.65 – 7.58 (m, 8H), 7.54 (d, J = 8.7 Hz, 4H), 4.25 (s, 4H), 3.13 (s, 8H). ¹³C NMR (125 MHz, CD₃NO₂) δ 155.98 (C), 154.89 (C), 151.87 (CH), 151.55 (CH), 150.02 (C), 143.73 (CH), 143.05 (C), 141.08 (C), 138.82 (C), 135.44 (C), 130.78 (CH), 129.13 (CH), 128.46 (CH), 127.36 (CH), 125.15 (CH), 124.02 (CH), 47.04 (CH₂), 39.71 (CH₂).

Metallacycle [Pd₂L'₂](NO₃)₆

An equimolar solution (10 mM) of complex (en)Pd(NO₃)₂ and L'NO₃ in D₂O (1.2 mL) was prepared. The mixture was heated at 60 °C for 5 min. The compound was not isolated; data are taken from measurements on the reaction mixture.¹H NMR (500 MHz, D₂O) δ 8.65 (d, *J* = 7.0 Hz, 4H), 8.63 (d, *J* = 6.7 Hz, 4H), 8.59 (d, *J* = 6.8 Hz, 4H), 8.22 (d, *J* = 7.1 Hz, 4H), 7.89 (d, *J* = 8.5 Hz, 4H), 7.77 (d, *J* = 8.5 Hz, 4H), 7.62 (d, *J* = 6.8 Hz, 4H), 7.44 (d, *J* = 6.8 Hz, 4H), 7.27 (s, 8H), 4.05 (s, 4H), 2.85 (q, *J* = 2.5 Hz, 8H). ¹³C NMR (126 MHz, D₂O) δ 155.60 (C), 155.05 (C), 151.23 (CH), 149.73(CH), 143.70 (CH), 143.38 (C), 140.23 (C), 138.97 (C), 134.60 (C), 130.31 (CH), 128.71 (CH), 128.37 (CH), 127.04 (CH), 124.73 (CH), 123.87 (CH), 46.63 (CH₂), 46.59 (CH₂) 39.97(CH₂).

Metallacycle [Pt₂L'₂](NO₃)₆

An equimolar solution (0.5 mM) of complex (en)Pt(NO₃)₂ (2.8 mg, 0.0075 mmol) and L'NO₃ (3.4 mg, 0.0075 mmol) in water (15 mL) was irradiated by microwave at 150 °C for 3 h. The solvent was evaporated to vacuum to yield [Pt₂L'₂](NO₃)₆ (6.0 mg, 97%). ¹H NMR (500 MHz, D₂O) δ 8.59 – 8.49 (m, 12H), 8.06 (d, *J* = 6.4 Hz, 4H), 7.74 (d, *J* = 8.1 Hz, 4H), 7.64 (d, *J* = 8.1 Hz, 4H), 7.53 (d, *J* = 7.0 Hz, 4H), 7.34 (d, *J* = 7.0 Hz, 4H), 7.30 – 7.18 (m, 8H), 3.98 (s, 4H), 2.68 (s, 8H). ¹³C NMR (126 MHz, D₂O) δ 155.37 (C), 155.16 (C), 151.85 (CH), 151.79 (CH), 149.59 (C), 143.51 (CH), 143.08 (C), 140.36 (C), 138.52 (C), 134.72 (C), 130.46 (CH), 128.87 (CH), 128.24 (CH), 127.42 (CH), 124.70 (CH), 124.24 (CH), 123.88 (CH), 47.45 (CH₂), 47.41 (CH₂), 39.91 (CH₂).

Metallacycle [Pt₂L'₂](PF₆)₆

 $[Pt_2L'_2](NO_3)_6$ (4.4 mg, 0.024 mmol) was dissolved in water (1.5 ml) and precipitated using an excess of KPF₆. The solid was filtered and washed with water (2 mL) to yield $[Pt_2L'_2](PF_6)_6$ (3.8 mg, 67%) ¹H NMR (500 MHz, CD₃CN) δ 8.80 (d, J = 7.0 Hz, 4H), 8.78 (d, J = 6.9 Hz, 4H), 8.68 (d, J = 6.8 Hz, 4H), 8.37 (d, J = 7.0 Hz, 4H), 8.08 (d, J = 8.6 Hz, 4H), 7.98 (d, J = 8.5 Hz, 4H), 7.86 (d, J = 6.9 Hz, 4H), 7.64 – 7.53 (m, 12H), 4.23 (s, 4H), 2.90 – 2.75 (m, 8H). ¹³C NMR (126 MHz, CD₃CN) δ 155.61 (C), 154.85 (C), 152.65 (CH), 152.33 (CH), 149.79 (C), 144.07 (CH), 142.76 (C), 140.95 (C), 138.45 (C), 135.34 (C), 130.79 (CH), 129.31 (CH), 128.62 (CH), 127.61 (CH), 125.21 (CH), 124.54 (CH), 124,53 (CH), 47.63 (CH₂), 39.69 (CH₂). HRMS (ESI) (*m/z*) calcd. for $[Pt_2L'_2-2PF_6]^{+2}$ 945.1427, found 945.1463; calcd. for $[Pt_2L'_2-3PF_6-H]^{2+}$ 872.6606, found 872.6593; calcd. for $[Pt_2L'_2-4PF_6-2H]^{2+}$ 800.1785, enc. 800.1749; calcd. for $[Pt_2L'_2-5PF_6-2H]^{3+}$ 485.1307, found 485.1293.

1-(2,4-Dinitrophenyl)-4-(4'-(pyridin-4-yl)-[1,1'-biphenyl]-4-yl)pyridin-1-ium chloride (2Cl)

A solution of 4,4'-di(pyridin-4-yl)-1,1'-biphenyl (0.150 g, 0.486 mmol) in a mixture of EtOH (30 mL) and CHCl₃ (10 mL) was heated at 80 °C until complete solubilization was observed, then 1-chloro-2,4-nitrobenzene (0.050 g, 0.243 mmol) was added and the mixture was refluxed for 4 d. After cooling, the solvents were removed and MeOH (15 mL) was added and filtered. The filtrate was removed under reduced pressure and the residue redissolved in CH₂Cl₂ (10 mL) and filtered again. The solid was triturated with a mixture of H₂O/MetOH 80:20 (15 mL) and filtered. The filtrate was evaporated to yield **2**Cl (0.019 g, 15%). ¹H NMR (500 MHz, CD₃OD) δ 9.35 (d, *J* = 2.5 Hz, 1H), 9.24 (d, *J* = 7.1 Hz, 2H), 8.98 (dd, *J* = 8.7, 2.5 Hz, 1H), 8.78 (d, *J* = 7.1 Hz, 2H), 8.67 (d, *J* = 6.4 Hz, 2H), 8.37 (d, *J* = 8.7 Hz, 1H), 8.36 (d, *J* = 8.5 Hz, 2H), 8.12 (d, *J* = 8.5 Hz, 2H), 8.01 (d, *J* = 2.3 Hz, 4H), 7.88 (d, *J* = 6.4 Hz, 2H). HRMS (ESI) (*m*/*z*) calcd. for [L-Cl]⁺ 475.1406; found 475.1373.

4-(4'-(Pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-1-(pyridin-4-ylmethyl)pyridin-1-ium hexafluorophosphate (LPF₆)

A solution of **2**Cl (103 mg, 0.20 mmol) and 4-(aminomethyl)pyridine (40 μ L, 0.40 mmol) in EtOH (20 mL) was stirred overnight. The solvent was removed under reduced pressure to leave a solid residue, which was subjected to flash chromatography (SiO₂, CH₃CN/NaCl (0.6 M)/MeOH 4/1/1). The ligand containing fractions were combined and the solvents evaporated. The residue was triturated with water (50 mL) and the yellow solid in suspension was filtered off. This solid was redissolved in the minimum ammount of MeOH and an excess of solid KPF₆ was added. To this solution water was added and a yellow precipitated appeared which was filtered and washed with water to yield LPF₆ (68 mg, 55%). ¹H NMR (500 MHz, CD₃CN) δ 8.76 (d, *J* = 7.0 Hz, 2H), 8.70 (br s, 4H), 8.39 (d, *J* = 7.0 Hz, 2H), 8.10 (d, *J* = 8.5 Hz, 2H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.93 (s, 4H), 7.74 (br s, 2H), 7.35 (d, *J* = 6.2 Hz, 2H), 5.77 (s, 2H). ¹³C NMR (126 MHz, CD₃CN) δ 150.71 (C), 149.99 (CH), 147.24

(CH), 144.78 (C), 143.89 (CH), 141.98 (C), 139.80 (C), 137.82 (C), 132.74 (C), 128.92 (CH), 128.22 (CH), 127.93 (CH), 127.71 (CH), 125.30 (CH), 122.84 (CH), 62.07 (CH₂).

4-(4'-(Pyridin-4-yl)-[1,1'-biphenyl]-4-yl)-1-(pyridin-4-ylmethyl)pyridin-1-ium nitrate (LNO₃)

A mixture of LPF₆ (68 mg, 109.4 mmol) and Amberlite CG-400 (0.3 g) was suspended into 20 mL of a mixture of water/methanol (2:1) and stirred for 12 h. The resin was removed by filtration and the solvent was removed under reduced pressure to yield LCl (33.5 mg, 60%). A solution of LCl (33.5 mg, 0.079 mmol) and AgNO₃ (13 mg, 0.077 mmol) in EtOH/water 1:1 (50 mL) was stirred at room temperature for 12 h with exclusion of light. The mixture was filtered and the filtrate was evaporated in vacuum to yield LNO₃ (34 mg, 96%). ¹H NMR (500 MHz, CD₃OD) δ 9.09 (d, *J* = 7.1 Hz, 2H), 8.68 (d, *J* = 6.3 Hz, 2H), 8.65 (d, *J* = 6.3 Hz, 2H), 8.58 (d, *J* = 7.1 Hz, 2H), 8.21 (d, *J* = 8.5 Hz, 2H), 8.05 (d, *J* = 8.5 Hz, 2H), 7.97 (d, *J* = 1.2 Hz, 4H), 7.83 (d, *J* = 6.3 Hz, 2H), 7.51 (d, *J* = 6.3 Hz, 2H), 5.95 (s, 2H). ¹³C NMR (125 MHz, CD₃OD) δ 156.79 (C), 149.95 (CH), 149.29 (CH), 148.45 (C), 144.97 (CH), 144.24 (C), 143.47 (C), 140.14 (C), 137.50 (C), 132.70 (C), 128.66 (CH), 127.99 (CH), 127.63 (CH), 127.48 (CH), 124.87 (CH),122.97 (CH), 121.63 (CH), 60.93 (CH₂). HRMS (ESI) (*m/z*) calcd. for [L-NO₃]⁺ 400.1808, found. 400.1823.

Metallacycle Pd₂L₂[PF₆]₂[OTf]₄

An equimolar solution (10 mM) of complex (en)Pd(OTf)₂ and LPF₆ in CD₃NO₂ (1.2 mL) was prepared. The compound was not isolated; data are taken from measurements on the reaction mixture. ¹H NMR (500 MHz, CD₃NO₂) δ 8.91 (d, J = 6.8 Hz, 4H), 8.79 (d, J = 6.6 Hz, 4H), 8.73 (d, J = 6.7 Hz, 4H), 8.31 (d, J = 6.4 Hz, 4H), 7.97 (d, J = 8.3 Hz, 4H), 7.90 (d, J = 8.2 Hz, 4H), 7.83 (s, 16H), 5.92 (s, 4H), 3.22–3.14 (m, 8H). ¹³C NMR (125 MHz, CD₃NO₂) δ 156.71 (C), 152.59 (CH), 151.38 (CH), 150.91 (C), 146.22 (C), 144.15 (CH), 143.22 (C), 141.03 (C), 134.75 (C), 132.67 (C), 128.64 (CH), 127.95 (CH), 127.80 (CH), 127.70 (CH), 127.17 (CH), 125.1 7 (CH), 123.74 (CH), 61.97 (CH₂), 47.08 (CH₂).

Ring-in-ring [Pd₄L₄](NO₃)₁₂

An equimolar solution (10 mM) of complex (en)Pd(NO₃)₂ and LNO₃ in D₂O (1.2 mL) was prepared. The mixture was heated at 60 °C for 10 min. The compound was not isolated; data are taken from measurements on the reaction mixture. ¹H NMR (500 MHz, D₂O) δ 8.98 (d, *J* = 6.8 Hz, 4H), 8.87 (d, *J* = 6.7 Hz, 4H), 8.77 (d, *J* = 6.4 Hz, 4H), 8.75 – 8.66 (m, 8H), 8.10 (t, *J* = 6.4 Hz, 8H), 7.77 (d, *J* = 6.9 Hz, 4H), 7.70 (d, *J* = 7.0 Hz, 8H), 7.62 (t, *J* = 6.9 Hz, 8H), 7.39 (d, *J* = 8.2 Hz, 4H), 7.35 (d, *J* = 6.1 Hz, 4H), 7.28 (d, *J* = 6.4 Hz, 4H), 7.19 (s, 8H), 6.78 (d, *J* = 8.1 Hz, 4H), 6.67 (d, *J* = 7.9 Hz, 4H), 5.99 (d, *J* = 7.8 Hz, 4H), 5.70 (s, 4H), 5.46 (d, *J* = 14.1 Hz, 2H), 5.11 (d, *J* = 14.1 Hz, 2H), 2.89 (s, 16H). ¹³C NMR (125 MHz, D₂O) δ 155.44 (C), 153.16 (C), 152.35 (CH), 152.11 (CH), 151.16 (CH), 151.07 (CH), 150.40 (C), 149.85 (C), 146.51 (C), 145.71 (C), 143.83 (CH), 142.98 (CH), 142.73 (C), 140.86 (C), 140.22 (C), 138.42 (C), 135.04 (C), 134.10 (C), 132.66 (C), 129.68 (C), 128.32 (CH), 127.64 (CH), 127.37 (CH), 127.20 (CH), 127.08 (CH), 126.92 (CH), 126.68 (CH), 126.50 (CH), 126.47 (CH), 126.46 (CH₂), 64.65 (CH₂).

Metalacycle [Pd₂L₂](NO₃)₆

By dilution:

An equimolar solution (1 mM) of complex (en)Pd(NO₃)₂ and LNO₃ in D₂O (1.2 mL) was prepared. The mixture was heated at 60 °C for 10 min. The compound was not isolated; data are taken from measurements on the reaction mixture. ¹H NMR (500 MHz, D₂O) δ 8.88 (d, *J* = 6.0 Hz, 4H), 8.67 (d, *J* = 6.6 Hz, 4H), 8.51 (d, *J* = 5.8 Hz, 4H), 8.01 (d, *J* = 6.5 Hz, 4H), 7.71 (d, *J* = 5.8 Hz, 4H), 7.64 (s, 8H), 7.56 (d, *J* = 6.1 Hz, 4H), 7.52 (s, 8H), 5.73 (s, 4H), 2.97 – 2.92 (m, 8H).

By change of polarity:

An equimolar solution (10 mM) of complex (en)Pd(NO₃)₂ and LNO₃ in a 1:1 mixture of CD₃OD/D₂O (1.2 mL) was prepared. The compound was not isolated; data are taken from measurements on the reaction mixture. ¹H NMR (500 MHz, CD₃OD/D₂O, 1:1) δ 8.79 (t, *J* = 7.9 Hz, 4H), 8.57 (d, *J* = 6.0 Hz, 2H), 8.20 (d, *J* = 6.6 Hz, 2H), 7.82 (d, *J* = 8.2 Hz, 2H), 7.70 (dd, *J* = 9.1, 7.1 Hz, 6H), 7.65 (s, 4H), 5.74 (d, *J* = 7.0 Hz, 4H), 2.80 (s, 8H). ¹³C NMR (125 MHz, D₂O) δ 157.93 (C), 153.91 (CH), 152.65 (CH), 152.30 (C), 147.98 (C), 145.68 (CH), 144.60 (C), 142.36 (C), 136.01 (C), 133.88 (C), 130.06 (CH), 129.26 (CH), 129.09 (CH), 129.07 (CH), 128.27 (CH), 126.42 (CH), 125.13 (CH), 48.28 (CH₂), 48.21 (CH₂).

By heating:

An equimolar solution (10 mM) of complex (en)Pd(NO₃)₂ and LNO₃ in D₂O (0.6 mL) was heated at 363 K and the measurements were taken at this temperature. ¹H NMR (300 MHz, D₂O, 363 K) δ 9.62 (d, *J* = 5.8 Hz, 4H), 9.37 (d, *J* = 6.5 Hz, 4H), 9.26 (d, *J* = 6.0 Hz, 4H), 8.77 (d, *J* = 6.4 Hz, 4H), 8.45 (d, *J* = 5.9 Hz, 4H), 8.39 (s, 8H), 8.31 (d, *J* = 6.2 Hz, 4H), 8.27 (s, 4H), 3.65 (s, 8H).

$[Pt_4L_4](NO_3)_{12}$ and $[Pt_2L_2](NO_3)_6$

An equimolar solution (8 mM) of complex (en)Pt(NO₃)₂ and LNO₃ in H₂O (2 mL) was heated at 150 °C for 3 h using microwave-assisted heating. The solvent was then evaporated under reduced pressure to leave the crude product.

 $[Pt_4L_4](NO_3)_{12}$: The solid was dissolved in D₂O (8 mM with respect to ligand L, 2 mL). ¹H NMR (500 MHz, D₂O) δ 9.10 (d, J = 6.1 Hz, 4H), 8.98 (d, J = 6.2 Hz, 4H), 8.85 (m, 8H), 8.81 (d, J = 6.0 Hz, 4H), 8.23 – 8.13 (br s, 4H), 7.84 (d, J = 6.2 Hz, 4H), 7.76 (m, 16 H), 7.68 (m, 8H), 7.47 (d, J = 8.1 Hz, 4H), 7.41 (d, J = 4.6 Hz, 4H), 7.35 (d, J = 7.6 Hz, 4H), 7.27 (s, 8H), 6.86 (d, J = 8.3 Hz, 4H), 6.79 (d, J = 8.1 Hz, 4H), 6.08 (s, 4H), 5.53 (s)*, 5.18 (s)*, 2.97–2.82 (m, 16H). Signals marked with an asterisk are partiality deuterated. HRMS (ESI) (*m/z*) calcd. for $[Pt_4L_4$ -3PF₆]⁺³ 1308.5118, found. 1308.5170; $[Pt_4L_4$ -4PF₆-H]⁺³ 1259.8545, found 1259.8636; calcd. for $[Pt_4L_4$ -5PF6-2H]⁺³ 1211.1972, found 1211.2047; calcd for $[Pt_4L_4$ -5PF₆-H]⁴⁺ 908.6497, found 908.6573; calcd. for $[Pt_4L_4$ -5PF₆]⁺⁵ 727.1212, found 727.1279.

 $[Pt_2L_2](NO_3)_6$: The solid was dissolved in D₂O (0.8 mM with respect to ligand L, 20 mL). ¹H NMR (500 MHz, D₂O) δ 8.97 (br s, 4H), 8.79 (br s, 4H), 8.64 (br s, 4H), 8.13 (br s, 4H), 7.78 (br s, 4H), 7.74 (br s, 8H), 7.63 (br s, 12H), 5.85 (br s, 4H), 2.90 – 2.78 (m, 8H).

Host-guest complex of [Pt₂L₂](NO₃)₆ with 1,5-bis[2-(hydroxyethoxy)ethoxy]naphthalene.

1,5-Bis[2-(hydroxyethoxy)ethoxy]naphthalene (2.6 mg, 0.006 mmol) was added to a solution (2.5 mM) of [**Pt₄L₄](NO₃)**₁₂ in D₂O (0.6 mL). ¹H NMR (500 MHz, D₂O) δ 9.32 (d, *J* = 6.7 Hz, 4H), 8.69 (d, *J* = 6.4 Hz, 4H), 8.66 (d, *J* = 6.5 Hz, 4H), 8.19 (d, *J* = 7.0 Hz, 4H), 7.45 (d, *J* = 6.6 Hz, 4H), 7.42 (d, *J* = 8.3 Hz, 4H), 7.27 (t, *J* = 7.6 Hz, 8H), 7.11 (d, *J* = 8.1 Hz, 4H), 6.89 (d, *J* = 8.0 Hz, 4H), 6.47 (d, *J* = 7.5 Hz, 4H), 6.40 (s broad, 4H), 6.26 (s broad, 4H), 5.73 (s, 4H), 4.15 (d, *J* = 4.2 Hz, 8H), 4.02 – 3.92 (m, 8H), 3.88 (dd, *J* = 5.9, 3.1 Hz, 8H), 3.82 – 3.74 (m, 8H), 3.70 (dd, *J* = 5.8, 3.3 Hz, 8H), 3.67 – 3.58 (m, 8H), 3.01 – 2.87 (m, 8H). ¹³C NMR (125 MHz, D₂O) δ 154.12 (C), 152.92 (C), 152.79 (CH), 150.48 (CH), 149.19 (C), 146.50 (C), 142.94 (CH), 142.35 (C), 139.91 (C), 132.47 (C), 130.28 (C), 127.77 (CH), 127.55 (CH), 127.05 (CH), 126.82 (CH), 126.40 (CH), 125.43 (CH₂), 69.55 (CH₂), 67.31 (CH₂), 61.39 (CH₂), 60.36 (CH₂), 46.74 (CH₂), 46.67 (CH₂).

NMR Spectra

Figure S2 $^1\!\mathrm{H}$ NMR (500 MHz, CD₃OD) spectrum of L'NO₃

Figure S4 COSY (500 MHz, CD₃OD) spectrum of L'NO₃

Figure S6 HMBC (500 MHz, CD₃OD) spectrum of L'NO₃

Figure S8¹³C NMR (125 MHz, CD₃CN) spectrum of L'PF₆

Figure S9 COSY (500 MHz, CD₃CN) spectrum of L'PF₆

Figure S10 HSQC (500 MHz, CD₃CN) spectrum of L'PF₆

Figure S11 HMBC (500 MHz, CD₃CN) spectrum of L'PF₆

Metallacycle [Pd₂L'₂](NO₃)₆

Figure S12 ¹H NMR (500 MHz, D₂O) spectrum of [Pd₂L'₂](NO₃)₆

Figure S14 COSY (500 MHz, D₂O) spectrum of [Pd₂L'₂](NO₃)₆

Figure S16 HMBC (500 MHz, D₂O) spectrum of [Pd₂L'₂](NO₃)₆

Metalociclo [Pd₂L'₂](PF₆)₆

Figure S18 ¹³C NMR (125 MHz, CD₃NO₂) spectrum of [Pd₂L'₂](PF₆)₆

Figure S19 COSY (500 MHz, CD₃NO₂) spectrum of [Pd₂L'₂](PF₆)₆

Figure S20 HSQC (500 MHz, CD₃NO₂) spectrum of [Pd₂L'₂](PF₆)₆

Figure S21 HMBC (500 MHz, CD₃NO₂) spectrum of [Pd₂L'₂](PF₆)₆

Figure S22 ¹H NMR (500 MHz, CD₃CN) spectrum of **2**Cl

Ligand LPF₆

Figure S23 ¹H NMR (500 MHz, CD₃CN) spectrum of LPF₆

Figure S25 COSY (125 MHz, CD₃CN) spectrum of LPF₆

Figure S27 HMBC (125 MHz, CD₃CN) spectrum of LPF₆

Figure S28 ¹H NMR (500 MHz, D₂O) spectrum of LNO₃

Figure S29 ^{13}C and DEPT NMR (125 MHz, D2O) spectrum of LNO3

Figure S31 ^{13}C and DEPT NMR (125 MHz, CD₃OD) spectrum of LNO₃

Figure S33 HSQC (125 MHz, D_2O) spectrum of LNO₃

Figure S35 HMBC (125 MHz, CD₃OD) spectrum of LNO₃

Metallacyle [Pd₂L₂](PF₆)₆

Figure S37 ¹³C and DEPT NMR (125 MHz, CD₃NO₂) spectrum of [Pd₂L₂](PF₆)₆

Figure S39 HSQC (125 MHz, CD_3NO_2) spectrum of $[Pd_2L_2](PF_6)_6$

Figure S40 HMBC (125 MHz, CD₃NO₂) spectrum of [Pd₂L₂](PF₆)₆

Figure S41 ¹H NMR (500 MHz, D₂O/CD₃OD) spectrum of [Pd₂L₂](NO₃)₆

Figure S42 13 C and DEPT NMR (125 MHz, D₂O/CD₃OD) spectrum of [Pd₂L₂](NO₃)₆

Figure S43 COSY (125 MHz, D_2O/CD_3OD) spectrum of $[Pd_2L_2](NO_3)_6$

Figure S45 HMBC (125 MHz, D₂O/CD₃OD) spectrum of [Pd₂L₂](NO₃)₆

Figure S46 ¹H NMR (500 MHz, D₂O) spectrum of $[Pd_2L_2](NO_3)_6$. Minor signals can be due to the $[Pd_4L_4](NO_3)_{12}$ species.

Figure S47 ¹H NMR (500 MHz, D₂O) spectrum of $[Pd_2L_2](NO_3)_6$ at 363K

Ring-in-ring [Pd₄L₄](NO₃)₁₂

Figure S48 ¹H NMR (500 MHz, D₂O) spectrum of $[Pd_4L_4](NO_3)_{12}$. Minor signals can be due to the $[Pd_2L_2](NO_3)_6$ species.

Figure S49 ¹³C and DEPT NMR (125 MHz, D₂O) spectrum of [Pd₄L₄](NO₃)₁₂

Figure S51 HSQC (125 MHz, D_2O) spectrum of $[Pd_4L_4](NO_3)_{12}$

Figure S52 HMBC (125 MHz, D₂O) spectrum of [Pd₄L₄](NO₃)₁₂

Figure S53 ¹H NMR (500 MHz, D₂O) spectrum of $BHEEN \subset [Pd_2L_2](NO_3)_6$

Figure S55 COSY (125 MHz, D₂O) spectrum of **BHEEN⊂[Pd₂L₂](NO₃)**₆

Figure S57 HMBC (125 MHz, D₂O) spectrum of BHEENC[Pd₂L₂](NO₃)₆

Ring-in-ring [Pt₄L₄](NO₃)₁₂

Figure S58 ¹H NMR (500 MHz, D_2O) spectrum of [Pt₄L₄](NO₃)₁₂

Metallacycle [Pt₂L₂](NO₃)₆

Figure S59 ¹H NMR (500 MHz, D₂O) spectrum of [Pt₂L₂](NO₃)₆

f1 (ppm)

Figure S60 ¹H NMR (500 MHz, D_2O) spectrum of equimolar solution of LNO₃ and (en)Pd(NO₃)₂: a) 10 mM; b) 2 mM; (c) 1.5 mM; (d) 0.125 mM.

Figure S61 ¹H NMR (500 MHz, D₂O) spectrum of [Pd₄L₄](NO₃)₁₂at: a) 298K; b) 313K; c) 343K; d) 363K.

Figure S62 Partial ¹H NMR (500 MHz, D₂O) spectrum of a solution of $[Pd_4L_4](NO_3)_{12}$ in D₂O (0.6 mL) after addition of a) 0 µL of CD₃OD; b) 200 µL of CD₃OD; c) 300 µL of CD₃OD; d) 600 µL of CD₃OD.

Figure S63 Partial ¹H NMR (500 MHz, D_2O) spectra of: a) [Pt₄L₄](NO₃)₁₂ (8 mM); b) solution a) after dilution to 0.8 mM.

Figure S64 ¹H NMR (500 MHz, D₂O) spectrum of a) $[Pt_4L_4](NO_3)_{12}$; b) $[Pt_4L_4](NO_3)_{12}$ after addition of BHEEN; c) $[Pd_4L_4](NO_3)_{12}$ after addition of BHEEN.

€ 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 f1 (ppm)

Figure S65 Partial ¹H NMR (500 MHz, D_2O/CD_3OD , 1/1 v/v) spectrum of $[Pd_2L_2](NO_3)_6$ after addition of: a) 0 mg NaNO₃; b) 1 mg NaNO₃ (20 mM), c) 2 mg NaNO₃ (40 mM).

Figure S66 Partial ¹H NMR (500 MHz, D₂O) spectrum of: a) $[Pd_4L_4](NO_3)_{12}$; b) $[Pt_4L_4](NO_3)_{12}$; c) $[Pd_2L_2](NO_3)_6$; d) $[Pt_2L_2](NO_3)_6$.

Figure S67 ¹H NMR (500 MHz, D₂O) spectrum of a) $[Pd_4L_4](NO_3)_{12}$; b) $[Pt_4L_4](NO_3)_{12}$; c) $[Pd_2L_2](NO_3)_6$ after dilution of $[Pd_4L_4](NO_3)_{12}$; d) $[Pt_2L_2](NO_3)_6$ after dilution of $[Pt_4L_4](NO_3)_{12}$.

Figure S68 A view of the crystal structure of $[Pt_2L'_2](PF_6)_6$ showing 50% probability displacement ellipsoids. Solvent molecules, counteranions, and H atoms are omitted for clarity.

Table 1 A-ray Crystallographic Experimental Data of $[Pt_2L_2](PF_6)$	Table	1 X-ray	Crystallog	raphic Ex	perimental	Data of	$[Pt_2L']$	$^{2}](\mathbf{PF}_{6})$
---	-------	---------	------------	-----------	------------	---------	------------	--------------------------

	[Pt ₂ L' ₂](PF ₆) ₆
Empirical formula	C ₆₈ H ₇₂ F ₃₆ N ₁₄ O ₂ P ₆ Pt ₂
Formula weight	2377.39
Crystal system	Triclínico
Space group	P -1
a (Å)	9.3083(17)
$b(\mathbf{A})$	9.9603(16)
$c(\dot{A})$	25.244(4)
α (deg)	95.668(12)°.
β (deg)	93.889(13)°.
γ (deg)	104.959(13)°.
$V(Å^3)$	2239.5(7)
Z	1
D_{calcd} (Mgm ⁻³)	1.763
$\mu (\text{mm}^{-1})$	3.353
F(000)	1164
θ limits (deg)	0.814 a 26.371°
<i>hkl</i> limits	-11/11, -12/12, -31/31
Reflections collected	34134
Independent reflections	9143
Rint	0.0386
$R [I > 2\sigma(I)]$	$R_1 = 0.0351$
	$wR_2 = 0.0888$
R (all data)	$R_1 = 0.0423$
(un unu)	$wR_2 = 0.0953$
Goodness-of-fit on F^2	1.089

Figure S69 SASA for (from left to right) **BiPh**, Pd_2L_2 , Pd_4L_4 (catenane), Pd_4L_4 (ring-in-ring). Only the BiPh units of the calculated structures were taken into account.

Computational Methods

Full geometry optimizations of the $[Pd_2L_2]^{6^+}$ and $[Pd_4L_4]^{12^+}$ systems were performed in aqueous solution employing DFT within the hybrid meta-GGA approximation with the M06⁵ functional and the Gaussian 09 package (Revision D.01).⁶ In these calculations we used the standard 6-31G(d,p) basis set for C, H, N and O atoms, while Pd was treated using the LanL2DZ effective core potential of Wadt and Hay and its associated basis set.⁷ No symmetry constraints have been imposed during the optimizations. The default values for the integration grid (75 radial shells and 302 angular points) and the SCF energy convergence criteria (10⁻⁸) were used in all calculations. Solvent effects were included by using the polarizable continuum model (PCM); In particular, we used the integral equation formalism (IEFPCM) variant as implemented in Gaussian 09.⁸

 $[Pd_2L_2]^{6+}$, M06/LanL2DZ/6-31G(d,p), aqueous solution.

Center	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Х	Y	Z
1	 6	9.268638	-1.595442	1.028568
2	6	8.661190	-2.806037	0.752361
3	6	9.648033	-2.733708	-1.429451
4	6	10.228740	-1.522726	-1.084244
5	1	9.144186	-1.103930	1.989778
6	1	8.045093	-3.278136	1.513207
7	1	9.818023	-3.147793	-2.419184
8	1	10.851757	-0.972169	-1.784234
9	6	8.111981	-4.649284	-0.871997
10	1	8.380430	-5.469357	-0.200751
11	1	8.345864	-4.961219	-1.893801
12	6	-5.919819	5.053660	0.372623
13	6	-6.055190	3.696851	-1.536933
14	6	-4.566919	4.831273	0.461615
15	6	-4.709707	3.443450	-1.485869
16	1	-6.701869	3.273298	-2.298802
17	1	-4.284259	2.778141	-2.229517
18	6	-8.116624	4.686499	-0.686771
19	1	-8.357781	5.057303	-1.686784
20	1	-8.381266	5.464948	0.033393
21	6	-9.589435	2.760479	-1.368770
22	6	-8.710117	2.791624	0.859643

⁵ Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.

⁶ Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**. ⁷ Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 270.

⁸ Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.

23	6	-10.166656	1.532146	-1.083107
24	6	-9.312426	1.566313	1.076195
25	1	-8.139119	3.254987	1.659950
26	1	-10.745073	0.989905	-1.826597
27	1	-9.230269	1.051814	2.030035
28	1	-9.720698	3.197931	-2.354560
29	6	5.916887	-5.109286	0.151323
30	6	6.054584	-3.574684	-1.620322
31	6	4.564773	-4.890742	0.264849
32	6	4 710105	-3 321300	-1 541652
33	1	6 699376	-3 097773	-2 351937
34	1	4 272549	-2 629281	-2 253117
35	- 7	12 665455	0 519198	0 676393
36	7 7	11 32/819	2 928/9/	0.070393
37	7 7	-11 338713	-2 952/93	0.600291
30	7	-12 670654	-0 536030	0.612099
20	í E	12 002504	-0.000000	0.012099
10	6	12.005504	2.930300	1 201062
40	0	12.225520	1.00/340	1.291002
41	1	13.235520	3.838938	1.099330
42	1	13.023663	2.951146	-0.4208/1
43		13.126193	1.6/2805	2.363572
44	1	14.434109	1.614412	1.166///
45	1	11.063042	3.196705	1.756421
46	1	10.884163	3.601941	0.180639
47	1	12.806021	-0.323701	1.232051
48	1	13.050933	0.326696	-0.249641
49	6	-12.816840	-2.953548	0.540436
50	6	-13.359832	-1.713352	1.203384
51	1	-13.253470	-3.861197	0.969142
52	1	-13.033578	-2.944406	-0.532606
53	1	-13.139466	-1.720383	2.275741
54	1	-14.444260	-1.634582	1.077055
55	1	-12.812324	0.297248	1.181641
56	1	-13.050335	-0.326137	-0.312651
57	1	-11.080291	-3.241461	1.644768
58	1	-10.898361	-3.613959	0.061307
59	46	-10.646310	-1.009335	0.402699
60	46	10.642420	0.989335	0.463258
61	1	-6.453720	5.689757	1.070957
62	1	-4.018283	5.329554	1.253440
63	1	4.021776	-5.416101	1.043519
64	1	6.453965	-5.796270	0.796806
65	6	3.919611	-3.974039	-0.579443
66	6	-5.936671	-2.141178	0.079049
67	6	-6.616457	-2.171246	1.303385
68	6	-6.690897	-1.835450	-1.061257
69	6	-7.967836	-1.889920	1.347985
70	1	-6.095326	-2.379568	2.232902
71	-	-8.039169	-1.559382	-0.945375
72	1	-6 238446	-1 827072	-2 048172
73	- 1	-8 514984	-1 890589	2 287474
74	1	-8 644728	-1 313696	-1 814373
, <u>-</u> 75	- 7	-8 667113	-1 582545	0 242440
, J 76	, 6	-3 916305	4 0052345	-0 169507
, 0 77	6	5.910303	7.000200 2.122286	0.102050
, , 7 0	6	5.950295 6.600461	2 122160	1 227022
70	6		2.1JZIUU 1 077570	_1 02000
19	o E	0./UZZ08	1 0/6120	-1.USZZU9
0 U 0 1	0	1.950241	1.040138 2.270605	1.394293
01	т С	0.U/0033	2.3/9093 1 55/141	2.233308
ŏ∠ o ⊃	10 1	8.049588	1.336141	-0.903985
రర	\perp	6.249216	T./88388	-2.018066

84	1	8.488379	1.842018	2.338993
85	1	8.663521	1.310825	-1.767218
86	7	8.662690	1.558286	0.291960
87	7	-6.650528	4.489016	-0.613801
88	7	6.647320	-4.453182	-0.777036
89	6	8.832617	-3.380322	-0.506957
90	7	10.025488	-0.962467	0.116221
91	7	-10.015536	0.947000	0.112826
92	6	2.485812	-3.704221	-0.466898
93	6	1.972337	-2.435630	-0.771460
94	6	1.598607	-4.706867	-0.053108
95	6	0.616576	-2.179859	-0.660713
96	1	2.643032	-1.626853	-1.053331
97	6	0.240657	-4.452346	0.036466
98	1	1.966582	-5.709368	0.153302
99	6	-0.276937	-3.184360	-0.263662
100	1	0.248159	-1.175752	-0.857201
101	1	-0.432747	-5.260360	0.311976
102	6	4.494438	2.397117	0.009817
103	6	3.956551	3.043831	-1.109733
104	6	3.628046	2.011847	1.040250
105	6	2.597699	3.304174	-1.191489
106	1	4.612263	3.383766	-1.908348
107	6	2.268834	2.265798	0.953284
108	1	4.014070	1.473647	1.903246
109	6	1.729107	2.920824	-0.161496
110	1	2.210572	3.844105	-2.052736
111	1	1.611392	1.922983	1.749059
112	6	-1.723256	-2.915104	-0.170842
113	6	-2.513454	-3.547873	0.797391
114	6	-2.344371	-2.021370	-1.053160
115	6	-3.873380	-3.296229	0.881883
116	1	-2.055414	-4.232082	1.507807
117	6	-3.705584	-1.775217	-0.975766
118	1	-1.759304	-1.526973	-1.825400
119	6	-4.493137	-2.408708	-0.006228
120	1	-4.463526	-3.815126	1.633686
121	1	-4.155287	-1.062471	-1.663791
122	6	0.284760	3.201784	-0.243344
123	6	-0.449087	3.517682	0.908023
124	6	-0.390460	3.160880	-1.471001
125	6	-1.804846	3.786864	0.837384
126	1	0.054153	3.573796	1.870398
127	6	-1.748669	3.416825	-1.543527
128	1	0.151633	2.903724	-2.377991
129	6	-2.480004	3.736878	-0.390704
130	1	-2.346343	4.011340	1.753186
131	1	-2.238282	3.393427	-2.514079
132	6	-8.831626	3.396274	-0.391192

 $[Pd_4L_4]^{12+}$, [2] catenane, M06/LanL2DZ/6-31G(d,p), aqueous solution.

Center	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Х	Y	Z
1	6	-8.506723	1.223246	-4.009196
2	6	-8.200638	-0.121723	-3.867928
3	6	-8.561847	0.115495	-1.512782

4	6	-8.853038	1.451159	-1.725511
5	1	-8.499916	1.707663	-4.982392
6	1	-7.958940	-0.706249	-4.751082
7	1	-8.614741	-0.288333	-0.504439
8	1	-9.124690	2.115566	-0.908989
9	6	-7.791535	-2.115993	-2.375445
10	1	-7.871636	-2.712673	-3.287326
11	1	-8.403442	-2.592125	-1.605905
12	6	7.504397	6.253660	0.311770
13	6	6 931715	5 878880	2 553383
14	6	6 178812	6 232569	-0 051782
15	6	5 598534	5 845589	2 237926
16	1	7 291892	5 738822	3 567631
17	1	4 890737	5 654660	3 036837
18	÷	9 303368	6 030117	1 988491
10	1	9 151511	6 7/9793	2 7979/6
20	1	9.92112	6 359862	1 120315
20	I 6	9.092112	1 307699	3 762334
21	6	9.759904	4.307099	1 167702
22	6	9.004123	2 000120	1 1 2 6 2 4 2
23	6	9.904090	2.909120	4.120243
24	0	10.094362	2.332921	1.901343
25	1	9.843128	3.835369	0.400/31
26	1	10.028913	2.690796	5.1/0444
27	1	10.250671	1.515340	1.202923
28	1	9.644883	5.062568	4.535490
29	6	-5.386984	-2.166268	-2.841140
30	6	-6.086213	-2.136211	-0.601381
31	6	-4.071652	-2.114347	-2.456921
32	6	-4.783877	-2.063280	-0.172553
33	1	-6.927984	-2.162100	0.087798
34	1	-4.602811	-1.994664	0.895734
35	7	-10.974202	3.966198	-3.915333
36	7	-9.270059	6.088531	-3.489263
37	7	10.382615	-1.924717	4.491203
38	7	12.139509	0.195761	4.593245
39	6	-10.715758	6.362695	-3.700063
40	6	-11.275675	5.266497	-4.569168
41	1	-10.862614	7.348377	-4.152914
42	1	-11.198780	6.361245	-2.717546
43	1	-10.791517	5.263839	-5.550977
44	1	-12.353491	5.386130	-4.718467
45	1	-8.729896	6.341444	-4.318253
46	1	-8.899130	6.645679	-2.720057
47	1	-11.131138	3.189276	-4.556372
48	1	-11.593804	3.815252	-3.117962
49	6	11.514354	-1.979192	5.454088
50	6	12.647839	-1.172622	4.875773
51	1	11.813980	-3.014893	5.643107
52	1	11.168226	-1.544170	6.397353
53	1	12.983479	-1.603962	3.926987
54	1	13.503895	-1.136143	5.556554
55	1	12.768393	0.699278	3.968573
56	1	12.087704	0.739868	5.455873
57	1	10.569751	-2.533270	3.692194
58	1	9.519467	-2.259078	4.919044
59	46	10.214000	0.040852	3.805321
60	46	-9.018717	4.042029	-3.185988
61	1	8.300357	6.419908	-0.406491
62	- 1	5.937250	6.412318	-1.094060
63	-	-3.318323	-2.153619	-3.236120
64	- 1	-5.684742	-2.219904	-3.883285
				· · · •

65	6	-3.720978	-2.033774	-1.096533
66	6	5.725364	-0.552208	2.011472
67	6	6.820269	-1.255720	1.493281
68	6	5.980903	0.339983	3.060629
69	6	8.076566	-1.074067	2.040349
70	1	6.690754	-1.984782	0.697630
71	6	7.265560	0.483883	3.550011
72	1	5 183921	0 936818	3 495522
73	1	8 936936	-1 633395	1 681096
74	1	7 486049	1 172939	4 361286
75	7	8 297963	-0 217775	3 052637
76	6	5 174061	6 013818	0 006065
70	6	-4 454196	1 668691	-1 640518
79	6	-4.434190	4.000091	-2 9/1207
70	6	-5.52000	4.230103	-2.941207
<i>79</i> 00	6	-5.550090	4.0441/1	-0.770373
00	1		4.040955	-3.330002
01		-3.955624	4.033092	-3.637607
82	0	-6.828010	4.63/055	-1.225002
83	1	-5.392463	5.184195	0.250636
84	1	-6.306812	3.722784	-4.33/021
85	1	-7.689590	4./91601	-0.5/9352
86	7	-7.083001	4.259041	-2.489337
87	7	7.872254	6.072849	1.599073
88	./	-6.381583	-2.170900	-1.922928
89	6	-8.206143	-0.686180	-2.596031
90	7	-8.811694	1.991180	-2.953427
91	7	10.131018	2.023621	3.207894
92	6	-2.327720	-1.909686	-0.671104
93	6	-1.936717	-2.200148	0.643981
94	6	-1.340466	-1.472568	-1.570082
95	6	-0.621558	-2.036812	1.045121
96	1	-2.654531	-2.592893	1.361202
97	6	-0.028761	-1.308337	-1.164929
98	1	-1.601578	-1.204891	-2.591203
99	6	0.359020	-1.570628	0.157125
100	1	-0.350500	-2.297978	2.065213
101	1	0.694278	-0.917134	-1.877860
102	6	-3.066074	4.934646	-1.232915
103	6	-2.645032	4.774947	0.093829
104	6	-2.127231	5.357910	-2.182581
105	6	-1.324127	5.002625	0.448281
106	1	-3.341475	4.419649	0.851164
107	6	-0.811645	5.594454	-1.824232
108	1	-2.435883	5.540457	-3.209071
109	6	-0.379303	5.408117	-0.504727
110	1	-1.014673	4.818988	1.475143
111	1	-0.117407	5.957117	-2.578283
112	6	1.739265	-1.320904	0.612250
113	6	2.825581	-1.342976	-0.275784
114	6	1.992496	-1.007038	1.953918
115	6	4.114819	-1.078905	0.164087
116	1	2.664352	-1.587039	-1.324210
117	6	3.277320	-0.741916	2.396168
118	1	1.168882	-0.940515	2.661500
119	6	4.361503	-0.780490	1.510697
120	1	4.936877	-1.072448	-0.553272
121	1	3 442439	-0.527831	3.449678
122	- 6	1_035234	5.606043	-0.144743
123	6	2.047532	5.424457	-1.098726
124	6	1.415162	5.964253	1.155717
125	6	3_379655	5.589271	-0.766983
	0			

126	1	1.793791	5.110915	-2.109129
127	6	2.749281	6.108597	1.496753
128	1	0.655334	6.152809	1.909909
129	6	3.760358	5.920405	0.542415
130	1	4.133107	5.412840	-1.531761
1.31	1	2.997279	6.409646	2.511254
132	-	9 669806	4 634280	2 413009
133	6	8 / 95 92 9	-0 /0/019	-1 036789
134	6	8 010245	0.909010	-3 773577
125	6	0.019243	0.072042	-1 127000
135	6	0.310223	0.429303	-1.437000
107	0	0./9900/	-0.821908	-1.//240/
137	1	8.5/6/83	-0./86/5/	-5.050935
138	1	1.132381	1.514400	-4.6014/4
139	1	8.265694	0.727733	-0.392664
140	1	9.146521	-1.527677	-1.022302
141	6	7.335903	2.638320	-2.104271
142	1	7.309383	3.306419	-2.969273
143	1	7.917602	3.129573	-1.321257
144	6	-7.280343	-5.970462	-0.805681
145	6	-6.579172	-6.890491	1.232513
146	6	-5.981208	-5.712728	-1.164923
147	6	-5.265248	-6.664839	0.909656
148	1	-6.876824	-7.363165	2.162943
149	1	-4.507592	-6.999327	1.609362
150	6	-8.985432	-6.659627	0.821204
1.51	1	-9.063372	-7.549062	1.450937
152	1	-9 595983	-6 821491	-0 070555
153	÷	-9 319951	-5 345878	2 948519
154	6	-9 805537	-4 278735	0 861345
155	6	-9 636741	-4 156750	3 587095
156	6	-10 095522	-4.130730	1 550077
150	0	-10.085555	-3.11/090	1.559677
157	1	-9.921204	-4.289920	-0.219020
158	1	-9.595710	-4.066252	4.669655
159	1	-10.385052	-2.203/56	1.052528
160	1	-9.026532	-6.205848	3.543895
161	6	4.960104	2.220038	-2.476039
162	6	5.672973	2.621731	-0.279955
163	6	3.661458	2.095779	-2.060117
164	6	4.382947	2.523192	0.178262
165	1	6.512048	2.815971	0.385442
166	1	4.222194	2.665927	1.241546
167	7	11.390123	-2.803006	-3.837617
168	7	9.944555	-5.150863	-3.898196
169	7	-10.931780	0.526336	4.774985
170	7	-12.264950	-1.875722	4.567727
171	6	11.427654	-5.225380	-3.828594
172	6	11.988221	-3.995023	-4.494516
173	1	11 794544	-6 140657	-4 303901
174	1	11 706724	-5 252757	-2 770320
175	1	11 707/59	-3 966596	-5 552/30
176	1	13 080428	-3 968064	-1 129820
177	1	0.616214	-3.900004 5.260774	-4.429020
170	1	9.010214	-5.000/70	-4.040029
170	1	9.510614	-5.0204/8	-3.2/2333
1/9	1	11.525/07	-1.965168	-4.402317
T80	Ţ	11.839956	-2.624081	-2.938548
181	6	-12.071443	0.261251	5.691554
182	6	-13.025127	-0.668520	4.986142
183	1	-12.563186	1.195435	5.980651
184	1	-11.667343	-0.207409	6.594664
185	1	-13.423155	-0.199723	4.080132
186	1	-13.868299	-0.941940	5.628297

187	1	-12.786872	-2.418317	3.880712
188	1	-12.103690	-2.492610	5.365741
189	1	-11.208593	1.187595	4.047687
190	1	-10.149014	0.948211	5.273517
191	46	-10.404083	-1.263274	3.843402
192	46	9.374079	-3.196017	-3.463917
193	1	-8.119719	-5.731236	-1.450406
194	1	-5.807062	-5.238984	-2.125786
195	1	2.919919	1.864758	-2.815519
196	1	5.246767	2.113097	-3.517472
197	6	3.315626	2.273300	-0.706371
198	6	-6.023658	0.255916	2.372489
199	6	-7.189915	0.877379	1.906849
200	6	-6.182084	-0.793680	3.286881
201	6	-8.426539	0.437293	2.344353
202	1	-7.140738	1.722220	1.224089
203	6	-7.447151	-1.179777	3.682354
204	1	-5.325256	-1.336140	3.675641
205	1	-9.345708	0.904776	1.998034
206	1	-7.591877	-1.993437	4.387943
207	± 7	-8 553654	-0 576707	3 217073
208	6	-4 920212	-6 036292	-0 300507
200	6	4 705400	-4 142773	-2 506953
210	6	5 142937	-3 873006	-3 809908
210	6	5 683024	-4 176415	-1 502621
212	6	6 483510	-3 642524	-4 055799
212	1	1 119609	-3 860456	-4 645178
217	6	7 008056	-3 951268	-1 81996/
215	1	5 417711	-4 359169	-0 464880
215	1	6 8/8002	-3 /269/5	-5 056892
210	1	7 785434	-3.983063	-1 059757
210	1 7	7.703434	-3.903003	-3.076603
210	6	7.401703	1 201168	-2 152607
219	0	0 070070	_1 229224	-2.452097
220	ן ד	0.0/22/3	-1.220224	-3.030333
221	6	1 507609	-3.004303	2.090947
222	6	0 874548	2.190022	_1 178814
223	6	0.074540	2.001042	-1.1/0014
224	0	0.295010	2 221065	1.024370
225	I E	-0 424262	2.521005	_0 750200
220	1	1 059422	1.0J4499 2 115210	-2 247955
227	I E	-0 741602	2.115210	-2.24/055
220	1	-0.741092	2 010206	2 500654
229	1		2.010200	_1 514202
230	I E	-1.194049	_1.721J90 _1.207176	-2 106012
232	6	2 267/99	-3 820701	-2.190912
232	6	2.207499	-5.020701	-2.972123
233	6	2.929390	-1 052007	-2 667112
234	1	0.955472	-4.052097	-2.00/113
235	I E	2.JIZ/0/ 1.507745	-5.100320	-0.001041
230	1	2 607500	-5 677010	-0.512602
237		0 574657	-0.077810	-0.JI200J
230	0	0.162462	-4.000004	-1.579540
2J9 2/0	⊥ 1	U.LO3402 1 250/12	-5.509403 -6 086121	-3.202330
24U 271	±	1.000412 _0 100054	-0.000431 1 /0007/	U.UIOJUO 1 050077
241 242	Ö	-2.100354	1 51/09/4	1.00ZZ//
242 272	U E	$-3 \cdot 210014$	1.J14044 0 000216	0.10019 0.10010
243 277	Ø	-2.3104U/ _1.400160	U.JUJZIO 1 150601	2.34301U
244 245	0	-4.48U168	T.T2A0AT	U.023399
240	⊥ E	-3.0092/0	1.009449 0 5//577	-U.OIJUJJ
240 217	0	-3.J&LY&Z _1 401637	0.3443//	2.109320
241	Ť	-1.40103/	0.//40/0	J.UZ030/

248	6	-4.687762	0.667934	1.919644
249	1	-5.313441	1.231055	-0.075631
250	1	-3.712331	0.178259	3.785172
251	6	-0.837505	-5.129671	-1.257738
252	6	-1.239591	-5.353712	0.066355
253	6	-1.812863	-5.195215	-2.262890
254	6	-2.556051	-5.647954	0.372599
255	1	-0.516260	-5.265402	0.873611
256	6	-3.131696	-5.489632	-1.960062
257	1	-1.529509	-5.057269	-3.303794
258	1	-2.830078	-5.777266	1.416364
259	1	-3.846210	-5.577352	-2.775144
260	6	-9.394708	-5.412841	1.560491
261	6	1.927996	2.180260	-0.256305
262	6	-3.529386	-5.727410	-0.634815
263	7	5.952458	2.495032	-1.598508
264	7	-7.573612	-6.535270	0.387439

 $[Pd_4L_4]^{12+}$, ring-in-ring, M06/LanL2DZ/6-31G(d,p), aqueous solution.

Center	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Х	Y	Z	
1	6	-7.460038	4.899600	-1.797102	
2	6	-7.059971	4.353816	-3.002596	
3	6	-8.672508	2.614702	-2.678990	
4	6	-9.018840	3.212360	-1.474159	
5	1	-7.017840	5.818217	-1.421761	
6	1	-6.288180	4.858870	-3.576951	
7	1	-9.197053	1.717566	-2.998202	
8	1	-9.789245	2.793383	-0.831759	
9	6	-7.208545	2.544138	-4.741098	
10	1	-7.066380	3.292823	-5.524655	
11	1	-7.927035	1.806998	-5.106808	
12	6	6.945527	-0.080162	4.120101	
13	6	6.073587	-2.250357	4.259599	
14	6	5.681382	0.441996	4.011968	
15	6	4.793350	-1.771976	4.158312	
16	1	6.295966	-3.307783	4.364984	
17	1	3.984904	-2.494278	4.192318	
18	6	8.500268	-1.974608	4.345735	
19	1	8.520544	-2.651998	5.203771	
20	1	9.181639	-1.146587	4.559807	
21	6	9.168120	-4.045451	3.082435	
22	6	8.993651	-1.985863	1.873622	
23	6	9.524091	-4.668964	1.895243	
24	6	9.358459	-2.668945	0.729265	
25	1	8.793561	-0.918628	1.810780	
26	1	9.734250	-5.734386	1.858471	
27	1	9.452242	-2.159486	-0.225727	
28	1	9.105193	-4.631022	3.995176	
29	6	-4.750944	2.509547	-4.771372	
30	6	-5.896431	0.588917	-4.064434	
31	6	-3.543030	1.915615	-4.502649	
32	6	-4.713413	-0.050395	-3.789603	
33	1	-6.862091	0.114235	-3.920548	
34	1	-4.754809	-1.057471	-3.386362	
35	7	-10.734872	5.923543	0.169659	

36	7	-9.435446	6.075356	2.598812
37	7	10.461089	-5.897482	-2.854218
38	7	11.927610	-5.556697	-0.547292
39	6	-10 880579	6 418013	2 537722
10	6	-11 179630	6 9/2587	1 156965
40 // 1	1	_11 120200	7 151025	2 200602
41	1	-11.138280	7.151025	3.300002
42	1	-11.445593	5.500892	2./34211
43	1	-10.616524	7.860554	0.959603
44	1	-12.245056	7.162335	1.035733
45	1	-8.866952	6.917769	2.698778
46	1	-9.229355	5.488135	3.406513
47	1	-10.690478	6.317811	-0.769448
48	1	-11.399948	5.149522	0.130861
49	6	11.685361	-6.717660	-2.657098
50	6	12 640835	-5 930345	-1 797450
51	1	12.010000	-6 981131	-3 619308
51 51	1	11 205011	-0.901131	-3.019300 0 1E41E2
52		11.385911	-7.642573	-2.154153
53	1	12.939610	-5.003598	-2.29/639
54	1	13.544315	-6.505876	-1.572316
55	1	12.435185	-4.835591	-0.036094
56	1	11.859073	-6.363014	0.075927
57	1	10.625781	-5.173754	-3.555845
58	1	9.689049	-6.467611	-3.197975
59	46	9.994812	-4.952820	-1.052989
60	46	-8 894011	5 168109	0 803931
61	1	7 833430	0 5/377/	1 118026
6.2	1	F 600942	1 510/10	2 016572
62	1	5.600843	1.010410	3.910373
63		-2.637701	2.4691//	-4./30025
64	1	-4.82/008	3.506563	-5.1923/5
65	6	-3.488898	0.609041	-3.987809
66	6	5.517624	-3.454607	-2.170453
67	6	6.644617	-2.926052	-2.814120
68	6	5.737044	-4.500079	-1.263461
69	6	7.901548	-3.415646	-2.522913
70	1	6.549957	-2.142712	-3.559385
71	6	7.022565	-4.940475	-1.014803
72	1	4 915225	-4 960083	-0 721685
72	1	9 790135	-3 012554	-3 00/729
75	1	7 220020	-J.012JJ4	-3.004729
74	1	7.220939	-3./31336	-0.296061
/5	1	8.089742	-4.402496	-1.630233
/6	6	4.548065	-0.389934	4.030151
77	6	-4.643238	3.420507	2.369594
78	6	-4.744238	4.693358	1.791566
79	6	-5.836037	2.707183	2.546195
80	6	-5.976550	5.182181	1.405719
81	1	-3.864705	5.303765	1.612352
82	6	-7.034263	3.247131	2.118870
83	1	-5 843382	1 726287	3 012275
84	1	-6 080284	6 167707	0 958165
05	⊥ 1	-7 072172	2 707001	2 222202
00	1 7	7 102005	2.707001	2.222303 1 EE0011
86	7	-7.102005	4.462799	1.550811
87		7.137283	-1.411513	4.242679
88	7	-5.911910	1.854107	-4.542332
89	6	-7.665310	3.182276	-3.455403
90	7	-8.415231	4.329505	-1.043707
91	7	9.614582	-3.989149	0.744266
92	6	-2.208428	-0.024591	-3.675315
93	6	-2.041633	-1.415276	-3.750301
94	6	-1.117041	0.759596	-3.279395
9.5	6	-0 811383	-1.991880	-3 483275
96	1	_2 86331E	-2 0/27/0	-1 076656
50	1	-2.003313	-2.040/40	-4.0/0000

97	6	0.098042	0.175181	-2.971215
98	1	-1.230077	1.836353	-3.172030
99	6	0.287671	-1.209321	-3.097341
100	1	-0.693555	-3.064956	-3.611946
101	1	0.908736	0.806012	-2.612507
102	6	-3.335270	2.853928	2.727336
103	6	-3.129703	1.469269	2.754820
104	6	-2.242648	3.684377	3.001392
105	6	-1.876516	0.940241	3.019635
106	1	-3.945368	0.790965	2.510065
107	6	-0.994260	3.153493	3.272644
108	1	-2.367954	4.764067	3.027340
109	6	-0 771308	1 767399	3 275904
110	1	-1 765380	-0 140978	2 986747
111	1	-0 186500	3 848634	3 479644
112	6	1 613022	-1 807149	-2 856435
113	6	2 771451	-1 036321	-3 026806
114	6	1 764440	-3 142580	-2 458526
115	6	1 026967	-1 57/821	-2 815108
116	1	2 694238	-0 002441	_3 353310
117	1	2.094230	-3 68/697	-2 246127
110	1	0 007051	-3.004097	-2.240127
110	L C	0.00/031	-3.701742	-2.275066
120	6	4.1/6408	-2.910040	-2.420972
120 121	1	4.898862	-0.934693	-2.930735
121	l C	3.101663	-4./2/182	-1.944206
122	6	0.578499	1.208978	3.506369
123	6	1.6893/3	2.046293	3.705825
124	6	0.815099	-0.1/4382	3.528873
125	6	2.958240	1.535551	3.900526
126	1	1.574790	3.124992	3.723377
127	6	2.086010	-0.687808	3.719045
128	1	0.004530	-0.883064	3.382799
129	6	3.194308	0.152074	3.899312
130	1	3.767154	2.240382	4.070865
131	1	2.202977	-1.768102	3.700055
132	6	8.893618	-2.682663	3.078406
133	6	6.935153	5.392282	-1.616304
134	6	5.718433	6.036644	-1.744833
135	6	6.342798	7.450714	0.086136
136	6	7.543847	6.763495	0.156915
137	1	7.212897	4.564889	-2.263067
138	1	5.023769	5.714093	-2.515662
139	1	6.145199	8.256576	0.786743
140	1	8.289949	7.008004	0.908007
141	6	4.068497	7.763241	-0.926192
142	1	3.983633	8.355310	-1.841836
143	1	3.938257	8.442883	-0.079074
144	6	-2.750314	-7.415648	0.651222
145	6	-4.185046	-5.670021	1.279175
146	6	-1.676607	-6.559489	0.626424
147	6	-3.146437	-4.771703	1.242140
148	1	-5.190023	-5.376932	1.563201
149	1	-3.339058	-3.738772	1.515356
150	6	-5.095926	-7.962908	1.051096
151	1	-5.066568	-8.406261	2.051040
152	1	-4.870732	-8.747512	0.322570
153	6	-7.413794	-7.322195	1.761691
154	6	-6.727984	-6.787040	-0.470939
155	6	-8.614515	-6.678507	1.506289
156	6	-7.943467	-6.153099	-0.654416
157	1	-6.007455	-6.809452	-1.284111

158	1	-9.383884	-6.599717	2.269409
159	1	-8.194992	-5.663998	-1.591105
160	1	-7.240947	-7.764276	2.738342
161	6	2.025254	6.807732	-1.904646
162	6	2.826977	5.936161	0.122444
163	6	0.957868	5.942902	-1.881495
164	6	1.777550	5.055264	0.188418
165	1	3.593808	5.991907	0.889831
166	1	1.704119	4.402083	1.052585
167	7	10.853047	5.939868	-0.595049
168	7	11.080615	3.351672	0.325080
169	7	-12.089148	-3.468249	0.122275
170	7	-11.907313	-6.213226	0.281980
171	6	12.232795	4.277682	0.493104
172	6	12.185586	5.280853	-0.629297
173	1	13.177031	3.724094	0.498608
174	1	12.120121	4.773818	1.462475
175	1	12.284335	4.783604	-1.599546
176	1	12.986555	6.021525	-0.540027
177	-	11.273775	2.685829	-0.424780
178	- 1	10.926450	2.805066	1.171837
179	- 1	10 663244	6 432363	-1 467543
180	1	10 824337	6 639837	0 148188
181	-	-13 283894	-4 242900	0 551785
182	6	-13 209122	-5 601366	-0.094850
183	1	-14 204422	-3 717237	0.278816
184	1	-13 248789	-4 329692	1 642434
185	1	-13 230636	-5 514747	-1 185886
186	1	-14 042545	-6 239809	0 214507
187	1	-11 685682	-7 005133	-0.320660
188	1	-11 9/9885	-6 574046	1 236425
189	1	-12 2129/5	-3 1/3383	-0 838271
190	1	-11 966343	-2 637456	0.700925
1 9 1	16	-10 /32299	-/ 738021	0.191655
192	40	9 407885	4.750021 A A91A10	-0 192737
193	1	-2 661585	-8 470322	0 413496
195 197	1	-0 703886	-6 950263	0.315759
105	1	0.262405	5 961376	-2 713585
195	1	2 179825	7 521405	-2.715505
107	L 6	0 801141	5 035375	-2.700073
198	6	-6 957884	-1 337022	-0 172182
190	6	-8 084846	-1 30//95	-0 997281
200	6	-6 920027	-2 322631	0.820462
200	6	-9 076158	-2 257680	-0 848131
201	1	-8 186283	-0 566395	-1 786991
202	1 6	-7 960691	-3 222989	0 933622
203	1	-6 093392	-2 378701	1 523373
205	1	-9 934507	-2.273174	-1 513288
205	1	-7 955553	-3 981861	1 7117/9
200	1 7	-9 015976	-3 208963	0 0985/9
207	6	-1 853444	-5 197259	0.000040
200	6	5 800331	1 1 2 2 5 7 5	0.11118
209 210	6	J.070603	1.102373 0 861167	-0 278105
211	6	5 RARDIA	2 ARG512	1 028112
∠⊥⊥ 212	6	2 020249 2 020622	2.739312 1 708026	-0 368075
212 213	1	0.009000 7 17/72/	-0 086612	-0 7077022
211	÷	,.I/4/34 6 001056	3 310775	0 020525
214 215	0	0.901030 A Q5Q356	2.310773 2.777175	1 595720
215 216	⊥ 1	4.9J9550 Q QQ7301	2./441/J 1 587060	1.JUJ130
210 217	⊥ 1	6 277620	T.J01203	1 200500
219 219	⊥ 7	0.0/2000 8 006286	3 006101	1.JJ0JJ99 0.2150/0
	1	0.000200	J.000104	0.210340

219	6	5.399806	7.069157	-0.863071
220	7	7.818554	5.738353	-0.663619
221	7	-8.855888	-6.079843	0.330429
222	6	-0.211978	2.858975	-0.155382
223	6	-1.565724	4.452978	-1.346553
224	6	-1.279548	1.979958	-0.127187
225	1	0.730965	2.557255	0.299567
226	6	-2.640254	3.579667	-1.292127
227	1	-1.701497	5.427059	-1.810319
228	6	-2.520747	2.320814	-0.684879
229	1	-1.151200	1.021652	0.372065
230	1	-3.584193	3.885733	-1.738723
231	6	4.769295	0.248110	0.485234
232	6	4.979604	-1.127654	0.618628
233	6	3.453707	0.724559	0.417615
234	6	3.903096	-1.997728	0.691804
235	1	5.994212	-1.520839	0.697714
236	6	2.383479	-0.150128	0.482897
237	1	3.273011	1.791866	0.299320
238	6	2.583105	-1.530672	0.626590
239	1	4.101115	-3.061992	0.797687
240	1	1.371800	0.252655	0.465512
241	6	-3.661673	1.387830	-0.612527
242	6	-4.985286	1.847418	-0.664709
243	6	-3.455700	0.008707	-0.454208
244	6	-6.056375	0.972295	-0.545050
245	1	-5.190720	2.913528	-0.752498
246	6	-4.521164	-0.863558	-0.304948
247	l	-2.442884	-0.391544	-0.461904
248	6	-5.839850	-0.393963	-0.340/6/
249	1	-7.072332	1.36/181	-0.554889
250		-4.337222	-1.931052	-0.198/08
251	6	1.439932	-2.458466	0.723468
202	6	0.1/443/	-2.103047	1 206705
200	6	-0 807004	-2.075016	1.290/03 0.21/050
255	0	0 036509	-2.973910	-0 281179
255	1	0.529259	-1.132400	-0.2011/9
257	1	2 537037	-4.024303	1 733300
258	1	-1 860460	-2 686632	-0 105540
259	1	0 673134	-5 602559	1 792417
260	- 6	-6 438004	-7 354339	0 771114
261	ő	-0.332291	4.109063	-0.775799
262	6	-0.731816	-4.256853	0.855803
263	7	2.944125	6.800609	-0.914174
264	7	-3.988370	-6.971203	0.967788