Supporting Information

Highly stable selenadiazole derivatives induce bladder cancer cell apoptosis and inhibit cell migration and invasion through activation of ROS-mediated signaling pathways

Results and Discussion

Figure S1. The ESI-MS spectrum of 1b.
Figure S2. The 1H NMR spectra of 1b.

Figure S3. The ESI-MS spectrum of 1d.
Figure S4. The 1H NMR spectra of 1d.

Figure S5. The ESI-MS spectrum of 2b.
Figure S6. The 1H NMR spectra of 2b.

Figure S7. The ESI-MS spectrum of 2c.
Figure S8. The 1H NMR spectra of 2c.

Figure S9. Fourier transform infrared spectroscopy (FTIR) of SeDs.
Figure S10. HPLC chromatogram of 1b.

Figure S11. The lipophilicity (logP) of 1a-2c and MMC.
Figure S12. Fluorescence spectra of 1c, 1d, 2a and 2c (5 µM) incubated in PBS at pH 4.0 and 7.0 for various periods of time.
Figure S13. (A) (B) Cell viability of bladder cancer cells (EJ, T24) treated with low concentrations of 1b. (C) Light microscopy images of exposed to low concentrations of 1b.

Figure S14. Effects of LY294002 and U0126 on 1b-induced inhibition on the growth of EJ cells. Cells were pretreated with 10 μM LY294002 or U0126 for 2 h and co-treated with 1b for another 24 h. Bars with different characters (a–c) are statistically different at the $P < 0.05$ level.