Supporting Information

Novel pyrazolylphosphite- and pyrazolylphosphinite-ruthenium(II) complexes as catalysts for hydrogenation of acetophenone

Gershon Amenuvor, a Collins Obuah, a Ebbe Nordlander, b and James Darkwa a *

a Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa.

b Inorganic Chemistry Research Group, Chemical Physics, Centre for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
Figure S1: $^{31}\text{P}^{1\text{H}}$ NMR spectrum of 3. Analysis was carried out in CDCl$_3$ at room temperature.
Figure S2: 31P$\{^1$H$\}$ NMR spectrum of L3. Analysis was carried out in CDCl$_3$ at room temperature.
Figure S3: 31P{1H} NMR spectrum of 1. Analysis was carried out in CDCl$_3$ at room temperature.
Figure S4: 31P-1H NMR spectrum of L1. Analysis was carried out in CDCl$_3$ at room temperature.
Figure S5: 13C-1H NMR spectrum of 1. Analysis was carried out in CDCl$_3$ at room temperature.
Figure S6: 13C{1H} NMR spectrum of 2. Analysis was carried out in CDCl$_3$ at room temperature.
Conditions: acetophenone = 2 mmol, ruthenium(II) catalyst = 0.02 mmol, (1 mol%) KOH = 1 mmol, 2-propanol (10 mL), 80 °C. Conversions were determined by GC.

Figure S7: %Conversion vs time for transfer hydrogenation of acetophenone to 1-phenylethanol using complex 6 as catalyst.
Conditions: acetophenone = 2 mmol, catalyst = 0.02 mmol (1 mol%), H₂ = 20 bar, KOH = 1 mmol, 70 °C, 6 h, ethanol = 5 mL

Figure S8: Time study of molecular hydrogenation of acetophenone to 1-phenylethanol using complex 3.
Figure S9a: 1H NMR spectrum of 4. Analysis was carried out in CDCl$_3$ at room temperature.
Figure S9b: 1H NMR spectrum of (4-i). Analysis was carried out in CDCl$_3$ at room temperature. (4-i) was isolated from a reaction mixture of 2-propanol, 4 and KOH.