Electronic Supplementary Information for

Ligand-Dependent Formation of Ion-Pair Cu^I/Cu^{III} Trifluoromethyl

Complexes Containing Bisphosphines

Song-Lin Zhang* and Wen-Feng Bie

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China

E-mail: slzhang@jiangnan.edu.cn

Table	of	Contents
10010	01	Contento

1. General experimental details	S1
2. The synthetic procedures, isolation and characterization of complexes 3-5	S1
3. Crystallographic study	S11
4. Reactivity studies of 3-5 with arylboronic acids	S29
4.1 Optimization of reaction of 3 with (4-methoxyphenyl)boronic acid	S29
4.2 General procedure for reaction of 3 with various arylboronic acids	S30
4.3 General procedure for reaction of 4 with various arylboronic acids	S31
4.4 General procedure for reaction of 5 with various arylboronic acids	S31

1. General experimental details

All chemicals were purchased commercially. CH₂Cl₂, toluene and DMF solvents were simply dried over Na₂SO₄ before use to extrude adventitious water. Other reactants were used as received without further purification. All the reactions were performed in a Schlenk tube under N₂ or O₂ atmosphere which was realized through evacuation/back-fill techniques after three times. For reactions involving AgF, a tinfoil was used to wrap the Schlenk tube to avoid the interference of visible light. NMR spectra were recorded on a 400 MHz spectrometer and processed with MestReNova program. Chemical shifts are reported in ppm and referenced to residual solvent peaks. Coupling constants are reported in Hertz. Elemental analyses were performed by the Analytic Laboratory of Jiangnan University.

2. The synthetic procedures, isolation and characterization of complexes 3-5

$[(DPPE)_2Cu]^+[Cu(CF_3)_4]^-(3)$

Into a 25-mL Schlenk tube equipped with a stir bar and wrapped with tinfoil (to avoid possible interference of visible light with AgF) were added CuI (190 mg, 1 mmol), DPPE (398 mg, 1 mmol) and AgF (508 mg, 4 mmol) at room temperature. The tube was then sealed. The air in the tube was evacuated and refilled with dry nitrogen three times. DMF (3 mL) was then added by syringe and the contents were vigorously stirred for 30 minutes. CF₃SiMe₃ (852 mg, 6 mmol) was then slowly added by syringe. The resulting mixture was further stirred for 18 hours at room temperature under nitrogen. The crude mixture was diluted with CH₂Cl₂ (10 mL), separated by

filtration and washed with CH₂Cl₂ (5 mL). The combined filtrate and the washings were washed with water (5 mL) three times. Then the organic layer was evaporated to dryness with silica gel. The crude mixture was purified by flash silica gel column chromatography under air with petroleum ether (PE)/ethylacetate (EA) (v/v = 10:1) as eluent to extrude residual DPPE. Then the silica gel column was washed with CH₂Cl₂ to obtain crude [(DPPE)₂Cu]⁺[Cu(CF₃)₄]⁻ (**3**). The crude product **3** was recrystallized using CH₂Cl₂ followed by hexane. The white crystals of [(DPPE)₂Cu]⁺[Cu(CF₃)₄]⁻ (**3**) were separated by decantation, washed with hexane (2 x 10 mL), and dried under vacuum. The yield of **3** was 391 mg (65%). ¹H NMR (400 MHz, CD₂Cl₂) δ : 7.43 – 7.34 (m, 4H), 7.30 – 7.18 (m, 16H), 2.47 (t, *J* = 6.9 Hz, 4H). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ : -34.7 (s). ³¹P NMR (162 MHz, CD₂Cl₂) δ : 4.7 (br s).

Figure S1. ¹H NMR (400 MHz, CD₂Cl₂) of complex **3**. Peak at 5.37 ppm is resonance of residual CH₂Cl₂ solvent. The peak at 1.59 ppm is resonance of residual water.

Figure S3. ³¹P NMR (162 MHz, CD₂Cl₂) of complex **3**.

$[(BINAP)_2Cu]^+[Cu(CF_3)_4]^-(4)$

Into a 25-mL Schlenk tube equipped with a stir bar and wrapped with tinfoil (to avoid possible interference of visible light with AgF) were added CuI (190 mg, 1 mmol), BINAP (622 mg, 1 mmol) and AgF (508 mg, 4 mmol) at room temperature. The tube was then sealed. The air in the tube was evacuated and refilled with dry nitrogen three times. DMF (3 mL) was then added by syringe and the contents were vigorously stirred for 30 minutes. CF₃SiMe₃ (852 mg, 6 mmol) was then slowly added by syringe. The resulting mixture was further stirred for 18 hours at room temperature under nitrogen. The crude mixture was diluted with CH₂Cl₂ (10 mL), separated by filtration and washed with CH₂Cl₂ (5 mL). The combined filtrate and the washings were washed with water (5 mL) three times. Then the organic layer was evaporated to dryness with silica gel. The crude mixture was purified by flash silica gel column chromatography under air with petroleum ether (PE)/ethylacetate (EA) (v/v = 10:1) as eluent to extrude residual BINAP. Then the silica gel column was washed with CH_2Cl_2 to give crude $[(BINAP)_2Cu]^+[Cu(CF_3)_4]^-$ (4). The crude product 4 was recrystallized using CH₂Cl₂ followed by hexane. The pale yellow crystals of $[(BINAP)_2Cu]^+[Cu(CF_3)_4]^-$ (4) were separated by decantation, washed with hexane (2) x 10 mL), and dried under vacuum. The yield of **4** was 765 mg (93%). ¹H NMR (400 MHz, CD_2Cl_2) δ : 8.00 (d, J = 6.5 Hz, 8H), 7.73 (d, J = 8.7 Hz, 4H), 7.64 (t, J = 7.4 Hz, 8H), 7.53-7.40 (m, 12H), 7.43 (t, J = 7.5 Hz, 4H), 7.22 (t, J = 7.3 Hz, 4H), 7.13 (d, J = 5.2 Hz, 8H), 7.02 (d, J = 8.6 Hz, 4H), 6.52 (t, J = 7.4 Hz, 4H), 6.07 (t, J = 7.6 Hz, 8H). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ: -34.7 (s). ³¹P NMR (162 MHz, CD₂Cl₂) δ: 15.9 (d, J

= 17.4 Hz), 14.4 (d, J = 17.4 Hz). ---caused by R and S-isomers of racemic BINAP used in our study.

(Both ¹H and ³¹P NMR spectra show a minor impurity containing BINAP (the ratio is *ca* 1:10 to the major product). ³¹P NMR (162 MHz, CD_2Cl_2) for the minor product: δ 10.84 (d, *J* = 17.4 Hz), 9.34 (d, *J* = 17.6 Hz).)

Figure S4. ¹H NMR (400 MHz, CD_2Cl_2) of complex **4**. A minor impurity was observed in a ratio of *ca* 1:10 to the desired product **4**.

Figure S5. $^{19}\mathrm{F}$ NMR (376 MHz, $CD_2Cl_2)$ of complex 4.

Figure S6. ³¹P NMR (162 MHz, CD_2Cl_2) of complex **4**. A minor impurity was observed in a ratio of *ca* 1:10 to the desired **4**.

$[(XantPhos)_2Cu]^+[Cu(CF_3)_4]^-(5)$

Into a 25-mL Schlenk tube equipped with a stir bar and wrapped with tinfoil (to avoid possible interference of visible light with AgF) were added CuI (190 mg, 1 mmol), XantPhos (578 mg, 1 mmol) and AgF (508 mg, 4 mmol) at room temperature. The tube was then sealed. The air in the tube was evacuated and refilled with dry nitrogen three times. DMF (3 mL) was then added by syringe and the contents were vigorously stirred for 30 minutes. CF₃SiMe₃ (852 mg, 6 mmol) was then slowly added by syringe. The resulting mixture was further stirred for 18 hours at room temperature under nitrogen. The crude mixture was diluted with CH₂Cl₂ (10 mL), separated by filtration and washed with CH₂Cl₂ (5 mL). The combined filtrate and the washings were washed with water (5 mL) three times. Then the organic layer was evaporated to dryness with silica gel. The crude mixture was purified by flash silica gel column chromatography under air with petroleum ether (PE)/ethylacetate (EA) (v/v = 10:1) as eluent to extrude residual Xantphos. Then the silica gel column was washed with CH_2Cl_2 to give crude $[(XantPhos)_2Cu]^+[Cu(CF_3)_4]^-$ (5). The crude product 5 was recrystallized using CH₂Cl₂ followed by hexane. The white crystals of $[(XantPhos)_2Cu]^+[Cu(CF_3)_4]^-$ (5) were separated by decantation, washed with hexane $(2 \times 10 \text{ mL})$, and dried under vacuum. The yield of 5 was 705 mg (90%). ¹H NMR $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta$: 7.58 (d, J = 7.5 Hz, 4H), 7.28 (s, 8H), 7.11 (t, J = 7.6 Hz, 4H), 6.93 (s, 32H), 6.75 (d, J = 6.1 Hz, 4H), 1.54 (s, 12H). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ : -34.7 (s). ³¹P NMR (162 MHz, CD₂Cl₂) δ : -8.2 (d, J = 18.1 Hz), -9.7 (d, J = 18.0

Hz).----caused by the endo/exo plane of Xantphos ligand which distinguishes the four P atoms into two categories.

Figure S7. ¹H NMR (400 MHz, CD₂Cl₂) of complex **5**.

Figure S8. ¹⁹F NMR (376 MHz, CD₂Cl₂) of complex **5**.

Figure S9. ³¹P NMR (162 MHz, CD₂Cl₂) of complex **5**.

The conversion of $[(BINAP)_2Cu]^+[Cu(CF_3)_4]^-$ (4) to $(phen)Cu(CF_3)_3$ (1) in the presence of excess additional phen ligand

Into a 25-mL Schlenk tube equipped with a stir bar were added $[(BINAP)_2Cu]^+[Cu(CF_3)_4]^-$ (4) (247 mg, 0.15 mmol) and phen (81 mg, 0.45 mmol). The air in the Schlenk was evacuated and refilled with dry nitrogen three times. Then, AcOH (2 mL) was added by syringe. The resulting mixture was stirred at 90 °C for 2h under nitrogen. Then, the mixture was allowed to cool to room temperature and diluted with CH₂Cl₂ (10 mL). The resulting mixture was separated by filtration and washed with water (3 x 5 mL). The combined organic layers were evaporated to dryness with silica gel. The crude mixture was purified by flash silica gel column chromatography with petroleum ether/ethyl acetate (v/v = 2:1) as eluent to give (phen)Cu(CF₃)₃ (1) (40 mg, 60%).

3. Crystallographic study

Crystals of complex **3** suitable for X-ray crystallographic analyses were grown by dissolving **3** in a mixed solvent of CH_2Cl_2 /hexane and then stored in the refrigerator for 2-3 days. CCDC 1441928 contains the detailed information about the crystallographic study and crystal structure of complex **3**. The following sections show some key information.

Crystal data

$\underline{C_{52}H_{48}CuP_4} \cdot \underline{C_4CuF_{12}} \cdot \underline{CH_2Cl_2}$	Complex 3
$M_r = 1284.83$	$D_{\rm x} = 1.519 {\rm Mg}{\rm m}^{-3}$
Monoclinic, $\underline{P2_1/c}$	Melting point: <u>?</u> K
Hall symbol: <u>?</u>	<u>Mo <i>K</i>\alpha</u> radiation, $\lambda = 0.71073$ Å
<i>a</i> = <u>14.5621 (10)</u> Å	Cell parameters from 9771 reflections
b = 15.2407 (11) Å	$\theta = \underline{2.7} - \underline{27.3}^{\circ}$

c = 25.3334 (16) Å	$\mu = 1.04 \text{ mm}^{-1}$
$\beta = \underline{92.568(2)}^{\circ}$	T = 273 K
$V = 5616.8 (7) \text{ Å}^3$	Block, colourless
$Z = \underline{4}$	$\underline{0.40} \times \underline{0.20} \times \underline{0.20}$ mm
F(000) = 2608	

Data collection

Bruker APEX-II CCD diffractometer	12912 independent reflections
Radiation source: fine-focus sealed tube	<u>10591</u> reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.051$
Detector resolution: $\underline{?}$ pixels mm ⁻¹	$\theta_{\text{max}} = \underline{27.6}^{\circ}, \ \theta_{\text{min}} = \underline{2.2}^{\circ}$
ϕ and ω scans	h = -18 18
Absorption correction: <u>multi-scan</u> Jacobson, R. (1998) Private communication	k = -19 19
$T_{\min} = \underline{0.680}, \ T_{\max} = \underline{0.818}$	l = -32 25
62209 measured reflections	

Refinement

Refinement on \underline{F}^2	Secondary atom site location: ?
Least-squares matrix: <u>full</u>	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = \underline{0.109}$	H-atom parameters constrained
$wR(F^2) = \underline{0.239}$	$\frac{W = 1/[\sigma^2(F_o^2) + 74.0416P]}{\text{where } P = (F_o^2 + 2F_c^2)/3}$
S = 1.28	$(\Delta/\sigma)_{\text{max}} = \underline{0.001}$
12912 reflections	$\Delta \rho_{\text{max}} = \underline{0.93} \text{ e } \text{\AA}^{-3}$
835 parameters	$\Delta \rho_{min} = \underline{-0.84} \ e \ \text{\AA}^{-3}$
<u>336</u> restraints	Extinction correction: none

0	
?	constraints

Extinction coefficient: ?

Primary atom site location: ?

Fractional atomic	coordinates	and isot	ropic or	equivalent	isotropic	displacement
parameters (Å ²)			-	-	•	

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cu1	1.22181 (6)	0.19520 (5)	0.22912 (3)	0.01657 (19)	
Cu2	0.74637 (8)	0.25058 (8)	0.03468 (4)	0.0390 (3)	
P1	1.36491 (12)	0.13794 (12)	0.23329 (7)	0.0175 (4)	
P2	1.17386 (12)	0.07957 (12)	0.27836 (7)	0.0169 (4)	
P3	1.13827 (13)	0.25108 (12)	0.15961 (7)	0.0198 (4)	
P4	1.19328 (12)	0.31999 (11)	0.27543 (7)	0.0178 (4)	
F1	0.6025 (9)	0.1177 (8)	0.0198 (4)	0.048 (3)	0.5
F1A	0.5789 (10)	0.1834 (11)	0.0117 (6)	0.074 (4)	0.5
F2	0.6855 (12)	0.0879 (11)	0.0279 (6)	0.059 (3)	0.5
F2A	0.7361 (10)	0.0620 (8)	0.0158 (5)	0.052 (3)	0.5
F3	0.6846 (8)	0.0961 (8)	0.0903 (4)	0.054 (3)	0.5
F3A	0.6904 (13)	0.1585 (10)	-0.0521 (6)	0.066 (4)	0.5
F4	0.9357 (9)	0.2575 (10)	0.0078 (5)	0.068 (3)	0.5
F4A	0.7229 (9)	0.1719 (10)	-0.0662 (4)	0.046 (3)	0.5
F5	0.8464 (12)	0.1356 (9)	-0.0254 (6)	0.057 (4)	0.5
F5A	0.7818 (11)	0.2910 (11)	-0.0638 (5)	0.064 (3)	0.5
F6	0.8394 (10)	0.2623 (8)	-0.0632 (4)	0.046 (3)	0.5
F6A	0.8647 (11)	0.1749 (14)	-0.0359 (6)	0.071 (4)	0.5
F7	0.8641 (9)	0.4045 (8)	0.0107 (4)	0.046 (3)	0.5
F7A	0.9038 (12)	0.3331 (12)	0.0166 (6)	0.077 (4)	0.5
F8	0.8684 (6)	0.3621 (4)	0.0911 (3)	0.0723 (19)	
F9	0.7569 (11)	0.4323 (9)	0.0673 (6)	0.077 (4)	0.5
F9A	0.7800 (13)	0.4187 (10)	0.0228 (7)	0.087 (4)	0.5

F10	0.7259 (9)	0.2521 (9)	0.1461 (4)	0.053 (3)	0.5
F10A	0.7204 (9)	0.3095 (11)	0.1366 (5)	0.063 (3)	0.5
F11	0.6690 (11)	0.3659 (9)	0.1060 (5)	0.071 (3)	0.5
F11A	0.6017 (9)	0.3303 (10)	0.0846 (5)	0.067 (3)	0.5
F12	0.5928 (9)	0.2460 (11)	0.1032 (5)	0.062 (3)	0.5
F12A	0.6353 (12)	0.1968 (11)	0.1094 (7)	0.087 (4)	0.5
C1	1.4075 (5)	0.0809 (5)	0.1759 (3)	0.0231 (15)	
C2	1.3481 (6)	0.0688 (6)	0.1325 (3)	0.0346 (19)	
H2	1.2887	0.0909	0.1326	0.043*	
C3	1.3777 (7)	0.0235 (7)	0.0889 (4)	0.050 (3)	
Н3	1.3369	0.0140	0.0594	0.059*	
C4	1.4636 (7)	-0.0076 (7)	0.0878 (4)	0.049 (3)	
H4	1.4833	-0.0366	0.0583	0.058*	
C5	1.5245 (7)	0.0041 (7)	0.1306 (4)	0.050 (3)	
Н5	1.5833	-0.0183	0.1296	0.058*	
C6	1.4962 (6)	0.0487 (6)	0.1751 (4)	0.041 (2)	
H6	1.5372	0.0568	0.2040	0.051*	
C7	1.4585 (5)	0.2086 (4)	0.2575 (3)	0.0197 (14)	
C8	1.5129 (5)	0.2524 (5)	0.2231 (3)	0.0256 (16)	
H8	1.5046	0.2430	0.1871	0.031*	
C9	1.5810 (6)	0.3108 (5)	0.2422 (3)	0.0320 (18)	
H9	1.6169	0.3397	0.2186	0.039*	
C10	1.5951 (5)	0.3248 (5)	0.2957 (3)	0.0303 (18)	
H10	1.6411	0.3629	0.3080	0.037*	
C11	1.5406 (6)	0.2818 (5)	0.3307 (3)	0.0325 (18)	
H11	1.5487	0.2920	0.3665	0.041*	
C12	1.4725 (5)	0.2234 (5)	0.3118 (3)	0.0271 (16)	
H12	1.4366	0.1941	0.3357	0.032*	

C13	1.3601 (5)	0.0484 (4)	0.2833 (3)	0.0198 (14)
H13A	1.3536	-0.0078	0.2651	0.026*
H13B	1.4172	0.0470	0.3044	0.026*
C14	1.2788 (5)	0.0609 (5)	0.3197 (3)	0.0232 (15)
H14A	1.2904	0.1113	0.3425	0.029*
H14B	1.2716	0.0097	0.3414	0.029*
C15	1.0791 (5)	0.0791 (5)	0.3228 (3)	0.0202 (14)
C16	1.0904 (7)	0.0760 (8)	0.3771 (3)	0.050 (3)
H16	1.1494	0.0742	0.3929	0.063*
C17	1.0145 (8)	0.0753 (10)	0.4080 (4)	0.065 (4)
H17	1.0224	0.0728	0.4446	0.081*
C18	0.9279 (6)	0.0779 (6)	0.3854 (4)	0.041 (2)
H18	0.8775	0.0767	0.4067	0.049*
C19	0.9152 (6)	0.0842 (6)	0.3317 (4)	0.038 (2)
H19	0.8560	0.0881	0.3165	0.045*
C20	0.9911 (5)	0.0842 (5)	0.3001 (3)	0.0278 (17)
H20	0.9824	0.0871	0.2635	0.035*
C21	1.1594 (4)	-0.0247 (4)	0.2434 (3)	0.0171 (13)
C22	1.1683 (5)	-0.1065 (5)	0.2686 (3)	0.0230 (15)
H22	1.1781	-0.1090	0.3051	0.027*
C23	1.1631 (5)	-0.1823 (5)	0.2401 (3)	0.0280 (17)
H23	1.1698	-0.2359	0.2573	0.035*
C24	1.1473 (5)	-0.1805 (5)	0.1857 (4)	0.0316 (18)
H24	1.1449	-0.2322	0.1665	0.039*
C25	1.1355 (6)	-0.1015 (6)	0.1603 (3)	0.0351 (19)
H25	1.1247	-0.0997	0.1241	0.043*
C26	1.1419 (6)	-0.0242 (5)	0.1894 (3)	0.0290 (17)
H26	1.1335	0.0293	0.1722	0.037*

C27	1.0501 (5)	0.1829 (5)	0.1268 (3)	0.0237 (15)
C28	0.9600 (6)	0.1810 (5)	0.1413 (3)	0.0333 (19)
H28	0.9412	0.2196	0.1669	0.044*
C29	0.8965 (8)	0.1233 (7)	0.1182 (4)	0.052 (3)
H29	0.8353	0.1250	0.1265	0.062*
C30	0.9259 (9)	0.0625 (6)	0.0818 (4)	0.057 (3)
H30	0.8849	0.0209	0.0677	0.072*
C31	1.0156 (9)	0.0621 (7)	0.0672 (4)	0.058 (3)
H31	1.0352	0.0220	0.0424	0.072*
C32	1.0758 (7)	0.1236 (6)	0.0890 (3)	0.042 (2)
H32	1.1355	0.1250	0.0778	0.051*
C33	1.1966 (6)	0.3008 (5)	0.1043 (3)	0.0287 (17)
C34	1.1485 (6)	0.3527 (6)	0.0678 (4)	0.038 (2)
H34	1.0855	0.3606	0.0696	0.047*
C35	1.1955 (8)	0.3921 (7)	0.0273 (4)	0.051 (3)
H35	1.1637	0.4278	0.0032	0.059*
C36	1.2867 (8)	0.3805 (7)	0.0232 (4)	0.053 (3)
H36	1.3171	0.4073	-0.0041	0.066*
C37	1.3369 (7)	0.3276 (7)	0.0598 (4)	0.045 (2)
H37	1.3998	0.3189	0.0576	0.056*
C38	1.2892 (6)	0.2880 (5)	0.1003 (3)	0.0327 (18)
H38	1.3209	0.2529	0.1248	0.040*
C39	1.0776 (5)	0.3459 (5)	0.1873 (3)	0.0247 (16)
H39A	1.1078	0.3994	0.1768	0.031*
H39B	1.0151	0.3471	0.1725	0.031*
C40	1.0763 (5)	0.3416 (5)	0.2486 (3)	0.0232 (15)
H40A	1.0355	0.2953	0.2591	0.029*
H40B	1.0545	0.3968	0.2622	0.029*

C41	1.2530 (5)	0.4208 (5)	0.2589 (3)	0.0189 (14)	
C42	1.3098 (5)	0.4215 (6)	0.2166 (3)	0.0304 (17)	
H42	1.3236	0.3696	0.1998	0.039*	
C43	1.3460 (6)	0.4994 (7)	0.1992 (4)	0.039 (2)	
H43	1.3834	0.4991	0.1704	0.047*	
C44	1.3280 (6)	0.5773 (6)	0.2244 (4)	0.038 (2)	
H44	1.3513	0.6302	0.2124	0.048*	
C45	1.2746 (6)	0.5759 (6)	0.2677 (4)	0.039 (2)	
H45	1.2640	0.6276	0.2858	0.049*	
C46	1.2363 (6)	0.4991 (5)	0.2844 (3)	0.0329 (18)	
H46	1.1987	0.4996	0.3132	0.041*	
C47	1.1884 (5)	0.3220 (5)	0.3466 (3)	0.0226 (15)	
C48	1.2707 (6)	0.3269 (8)	0.3760 (3)	0.045 (2)	
H48	1.3251	0.3321	0.3584	0.057*	
C49	1.2734 (9)	0.3247 (9)	0.4301 (4)	0.065 (3)	
H49	1.3293	0.3296	0.4492	0.083*	
C50	1.1916 (9)	0.3162 (7)	0.4565 (4)	0.054 (3)	
H50	1.1926	0.3146	0.4930	0.066*	
C51	1.1121 (8)	0.3101 (7)	0.4286 (4)	0.051 (3)	
H51	1.0582	0.3008	0.4460	0.064*	
C52	1.1077 (6)	0.3147 (6)	0.3733 (3)	0.038 (2)	
H52	1.0514	0.3138	0.3549	0.047*	
C53A	0.6839 (16)	0.1335 (13)	0.0415 (8)	0.044 (3)	0.5
C53	0.6685 (18)	0.1589 (16)	0.0021 (10)	0.067 (4)	0.5
C54	0.8448 (15)	0.2295 (15)	-0.0134 (8)	0.055 (3)	0.5
C54A	0.7782 (13)	0.2155 (14)	-0.0354 (6)	0.043 (3)	0.5
C55	0.8131 (17)	0.3603 (13)	0.0497 (9)	0.049 (4)	0.5
C55A	0.838 (2)	0.3417 (18)	0.0385 (11)	0.066 (4)	0.5

C56A	0.6786 (8)	0.2774 (8)	0.0971 (4)	0.054 (2)	
Cl1_1	1.488 (2)	0.025 (4)	0.424 (3)	0.071 (6)	0.5
Cl2_1	1.5535 (4)	0.1858 (4)	0.4758 (2)	0.0599 (14)	0.5
C1_1	1.5848 (13)	0.0889 (12)	0.4428 (11)	0.073 (5)	0.5
H1A_1	1.6176	0.1042	0.4116	0.088*	0.5
H1B_1	1.6259	0.0546	0.4659	0.088*	0.5
Cl1_2	1.6532 (5)	0.1179 (6)	0.4419 (3)	0.093 (3)	0.5
Cl2_2	1.477 (2)	0.037 (4)	0.423 (3)	0.071 (6)	0.5
C1_2	1.5381 (9)	0.1171 (18)	0.4607 (10)	0.073 (5)	0.5
H1A_2	1.5105	0.1743	0.4545	0.088*	0.5
H1B_2	1.5356	0.1035	0.4980	0.088*	0.5

Geometric parameters (Å, °)

Cu1—P1	2.2573 (19)	C16—C17	1.382 (13)
Cu1—P2	2.2862 (19)	С17—Н17	0.930 (10)
Cu1—P3	2.2616 (19)	C17—C18	1.362 (15)
Cu1—P4	2.283 (2)	C18—H18	0.930 (8)
Cu2—C53A	2.014 (17)	C18—C19	1.369 (13)
Cu2—C53	1.958 (18)	С19—Н19	0.930 (9)
Cu2—C54	1.949 (17)	C19—C20	1.394 (11)
Cu2—C54A	1.931 (14)	С20—Н20	0.931 (8)
Cu2—C55	1.962 (16)	C21—C22	1.403 (10)
Cu2—C55A	1.922 (17)	C21—C26	1.382 (10)
Cu2—C56A	1.945 (10)	С22—Н22	0.930 (7)
P1—C1	1.825 (8)	C22—C23	1.363 (11)
Р1—С7	1.821 (7)	С23—Н23	0.928 (8)
P1—C13	1.865 (7)	C23—C24	1.388 (12)

P2—C14	1.835 (7)	C24—H24	0.925 (8)
P2—C15	1.819 (7)	C24—C25	1.372 (12)
P2—C21	1.827 (7)	С25—Н25	0.925 (8)
P3—C27	1.822 (8)	C25—C26	1.390 (11)
P3—C33	1.834 (8)	С26—Н26	0.929 (8)
P3—C39	1.848 (8)	C27—C28	1.378 (11)
P4—C40	1.835 (8)	С27—С32	1.382 (11)
P4—C41	1.823 (7)	С28—Н28	0.926 (9)
P4—C47	1.807 (7)	C28—C29	1.386 (12)
F1—C53A	1.31 (2)	С29—Н29	0.926 (11)
F1A—C53	1.39 (3)	С29—С30	1.388 (16)
F2—C53	1.28 (3)	С30—Н30	0.931 (10)
F2A—C53A	1.49 (3)	C30—C31	1.373 (17)
F3—C53A	1.36 (2)	С31—Н31	0.931 (10)
F3A—C53	1.42 (3)	C31—C32	1.381 (14)
F4—C54	1.47 (3)	С32—Н32	0.926 (10)
F4A—C54A	1.28 (2)	C33—C34	1.383 (11)
F5—C54	1.46 (3)	C33—C38	1.372 (12)
F5A—C54A	1.36 (3)	С34—Н34	0.929 (9)
F6—C54	1.36 (2)	C34—C35	1.394 (13)
F6A—C54A	1.40 (3)	С35—Н35	0.926 (9)
F7—C55	1.43 (2)	C35—C36	1.347 (16)
F7A—C55A	1.14 (3)	С36—Н36	0.933 (9)
F8—C55	1.29 (3)	C36—C37	1.408 (15)
F8—C55A	1.42 (3)	С37—Н37	0.930 (10)
F9—C55	1.45 (3)	C37—C38	1.400 (11)
F9A—C55A	1.49 (4)	С38—Н38	0.928 (9)
F10—C56A	1.445 (16)	С39—Н39А	0.970 (8)

F10A—C56A	1.248 (15)	С39—Н39В	0.969 (7)
F11—C56A	1.377 (17)	C39—C40	1.553 (10)
F11A—C56A	1.404 (17)	C40—H40A	0.968 (7)
F12—C56A	1.353 (16)	C40—H40B	0.968 (8)
F12A—C56A	1.421 (18)	C41—C42	1.382 (10)
C1—C2	1.379 (11)	C41—C46	1.385 (11)
C1—C6	1.384 (11)	С42—Н42	0.925 (8)
С2—Н2	0.928 (8)	C42—C43	1.380 (12)
C2—C3	1.389 (12)	С43—Н43	0.930 (9)
С3—Н3	0.945 (9)	C43—C44	1.378 (14)
C3—C4	1.339 (14)	C44—H44	0.931 (8)
С4—Н4	0.925 (9)	C44—C45	1.374 (14)
C4—C5	1.381 (14)	C45—H45	0.928 (9)
С5—Н5	0.923 (9)	C45—C46	1.371 (12)
C5—C6	1.395 (12)	С46—Н46	0.932 (9)
С6—Н6	0.932 (9)	C47—C48	1.384 (12)
С7—С8	1.376 (10)	C47—C52	1.386 (11)
C7—C12	1.400 (11)	C48—H48	0.930 (9)
С8—Н8	0.927 (7)	C48—C49	1.370 (13)
С8—С9	1.402 (11)	С49—Н49	0.931 (11)
С9—Н9	0.923 (8)	C49—C50	1.399 (16)
C9—C10	1.380 (12)	С50—Н50	0.925 (9)
С10—Н10	0.930 (7)	C50—C51	1.332 (16)
C10—C11	1.380 (12)	С51—Н51	0.927 (10)
С11—Н11	0.923 (8)	C51—C52	1.403 (13)
C11—C12	1.400 (10)	С52—Н52	0.924 (9)
С12—Н12	0.931 (8)	Cl1_1—C1_1	1.761 (10)
С13—Н13А	0.975 (7)	Cl2_1—C1_1	1.766 (10)

С13—Н13В	0.969 (7)	C1_1—H1A_1	0.9700
C13—C14	1.544 (11)	C1_1—H1B_1	0.9700
C14—H14A	0.972 (7)	Cl1_2C1_2	1.763 (10)
C14—H14B	0.963 (7)	Cl2_2C1_2	1.765 (10)
C15—C16	1.380 (11)	C1_2—H1A_2	0.9700
C15—C20	1.382 (10)	C1_2—H1B_2	0.9700
С16—Н16	0.931 (9)		
P1—Cu1—P2	88.88 (7)	С29—С30—Н30	119.9 (14)
P1—Cu1—P3	130.19 (8)	C31—C30—C29	120.5 (9)
P1—Cu1—P4	119.14 (7)	С31—С30—Н30	119.7 (12)
P3—Cu1—P2	123.25 (7)	С30—С31—Н31	120.6 (12)
P3—Cu1—P4	89.00 (7)	C30—C31—C32	119.0 (9)
P4—Cu1—P2	107.15 (7)	С32—С31—Н31	120.4 (14)
C53—Cu2—C55	164.1 (11)	С27—С32—Н32	118.9 (9)
C54—Cu2—C53	92.7 (11)	C31—C32—C27	122.3 (10)
C54—Cu2—C55	83.7 (10)	С31—С32—Н32	118.8 (10)
C54A—Cu2—C53A	87.8 (8)	C34—C33—P3	120.7 (7)
C54A—Cu2—C56A	163.3 (6)	C38—C33—P3	119.3 (6)
C55A—Cu2—C53A	161.8 (12)	C38—C33—C34	120.0 (8)
C55A—Cu2—C54A	93.0 (10)	С33—С34—Н34	120.8 (9)
C55A—Cu2—C56A	100.5 (10)	C33—C34—C35	119.3 (9)
C56A—Cu2—C53A	82.5 (7)	С35—С34—Н34	120.0 (9)
C56A—Cu2—C53	100.8 (9)	С34—С35—Н35	119.3 (11)
C56A—Cu2—C54	163.2 (8)	C36—C35—C34	121.1 (9)
C56A—Cu2—C55	85.9 (7)	С36—С35—Н35	119.5 (10)
C1—P1—Cu1	119.5 (2)	С35—С36—Н36	120.1 (12)
C1—P1—C13	102.5 (3)	C35—C36—C37	120.6 (8)
C7—P1—Cu1	117.5 (2)	С37—С36—Н36	119.3 (12)

C7—P1—C1	105.9 (3)	С36—С37—Н37	121.7 (9)
C7—P1—C13	104.7 (3)	C38—C37—C36	117.9 (9)
C13—P1—Cu1	104.6 (2)	С38—С37—Н37	120.3 (10)
C14—P2—Cu1	99.4 (2)	C33—C38—C37	121.0 (8)
C15—P2—Cu1	126.8 (2)	С33—С38—Н38	119.5 (8)
C15—P2—C14	106.4 (3)	С37—С38—Н38	119.4 (9)
C15—P2—C21	102.8 (3)	Р3—С39—Н39А	108.8 (6)
C21—P2—Cu1	116.0 (2)	Р3—С39—Н39В	109.0 (6)
C21—P2—C14	102.5 (3)	Н39А—С39—Н39В	107.8 (7)
C27—P3—Cu1	118.9 (2)	C40—C39—P3	112.0 (5)
С27—Р3—С33	103.2 (4)	С40—С39—Н39А	109.6 (7)
С27—Р3—С39	106.2 (3)	С40—С39—Н39В	109.6 (7)
C33—P3—Cu1	119.9 (3)	P4—C40—H40A	109.8 (6)
C33—P3—C39	102.3 (4)	P4—C40—H40B	109.7 (6)
C39—P3—Cu1	104.4 (2)	C39—C40—P4	109.0 (5)
C40—P4—Cu1	98.4 (2)	С39—С40—Н40А	109.9 (6)
C41—P4—Cu1	119.0 (2)	С39—С40—Н40В	109.8 (7)
C41—P4—C40	102.0 (3)	H40A—C40—H40B	108.6 (7)
C47—P4—Cu1	122.9 (2)	C42—C41—P4	119.5 (6)
C47—P4—C40	106.8 (3)	C42—C41—C46	118.6 (7)
C47—P4—C41	104.8 (3)	C46—C41—P4	121.6 (6)
C2—C1—P1	118.4 (6)	C41—C42—H42	120.0 (8)
C2—C1—C6	119.5 (7)	C43—C42—C41	120.3 (8)
C6—C1—P1	122.1 (6)	C43—C42—H42	119.7 (8)
С1—С2—Н2	120.1 (8)	С42—С43—Н43	119.4 (10)
C1—C2—C3	119.7 (8)	C44—C43—C42	120.7 (8)
С3—С2—Н2	120.3 (8)	С44—С43—Н43	119.9 (9)
С2—С3—Н3	120.0 (10)	C43—C44—H44	121.0 (10)

C4—C3—C2	121.1 (9)	C45—C44—C43	118.8 (8)
С4—С3—Н3	119.0 (10)	C45—C44—H44	120.1 (10)
С3—С4—Н4	120.6 (11)	C44—C45—H45	119.6 (9)
C3—C4—C5	120.4 (8)	C46—C45—C44	120.8 (8)
С5—С4—Н4	119.0 (10)	C46—C45—H45	119.6 (10)
С4—С5—Н5	119.7 (9)	C41—C46—H46	119.6 (8)
C4—C5—C6	119.7 (9)	C45—C46—C41	120.7 (8)
С6—С5—Н5	120.6 (10)	С45—С46—Н46	119.8 (9)
C1—C6—C5	119.7 (8)	C48—C47—P4	117.8 (6)
С1—С6—Н6	120.4 (9)	C48—C47—C52	118.3 (7)
С5—С6—Н6	119.9 (9)	C52—C47—P4	123.8 (6)
C8—C7—P1	121.1 (6)	С47—С48—Н48	118.8 (8)
C8—C7—C12	118.7 (7)	C49—C48—C47	121.6 (9)
C12—C7—P1	120.0 (5)	C49—C48—H48	119.6 (10)
С7—С8—Н8	119.7 (8)	С48—С49—Н49	120.3 (12)
С7—С8—С9	120.6 (7)	C48—C49—C50	119.5 (10)
С9—С8—Н8	119.7 (8)	С50—С49—Н49	120.2 (10)
С8—С9—Н9	119.5 (8)	С49—С50—Н50	120.3 (12)
С10—С9—С8	120.5 (7)	C51—C50—C49	119.5 (9)
С10—С9—Н9	119.9 (8)	С51—С50—Н50	120.2 (12)
С9—С10—Н10	119.9 (9)	С50—С51—Н51	119.6 (10)
C9—C10—C11	119.5 (7)	C50—C51—C52	121.7 (9)
C11—C10—H10	120.6 (9)	С52—С51—Н51	118.7 (11)
C10—C11—H11	119.9 (8)	C47—C52—C51	119.3 (9)
C10—C11—C12	120.1 (7)	С47—С52—Н52	120.5 (8)
C12—C11—H11	119.9 (8)	С51—С52—Н52	120.1 (9)
С7—С12—Н12	119.9 (7)	F1—C53A—Cu2	122.1 (16)
C11—C12—C7	120.5 (7)	F1—C53A—F2A	98.7 (15)

C11—C12—H12	119.6 (8)	F1—C53A—F3	106.0 (15)
P1—C13—H13A	109.1 (5)	F2A—C53A—Cu2	111.6 (12)
P1—C13—H13B	109.4 (5)	F3—C53A—Cu2	117.7 (12)
H13A—C13—H13B	107.7 (6)	F3—C53A—F2A	96.1 (16)
C14—C13—P1	111.6 (5)	F1A—C53—Cu2	105.4 (15)
C14—C13—H13A	109.3 (6)	F1A—C53—F3A	115 (2)
C14—C13—H13B	109.6 (6)	F2—C53—Cu2	107.0 (15)
P2—C14—H14A	109.6 (6)	F2—C53—F1A	107 (2)
P2—C14—H14B	110.0 (5)	F2—C53—F3A	116 (2)
C13—C14—P2	108.6 (5)	F3A—C53—Cu2	105.1 (14)
C13—C14—H14A	109.6 (6)	F4—C54—Cu2	113.5 (14)
C13—C14—H14B	110.3 (7)	F5—C54—Cu2	108.1 (13)
H14A—C14—H14B	108.8 (7)	F5—C54—F4	109.8 (17)
C16—C15—P2	123.9 (6)	F6—C54—Cu2	120.4 (15)
C16—C15—C20	118.9 (7)	F6—C54—F4	104.3 (15)
C20—C15—P2	117.2 (6)	F6—C54—F5	99.6 (16)
C15—C16—H16	119.7 (9)	F4A—C54A—Cu2	122.2 (11)
C15—C16—C17	120.1 (9)	F4A—C54A—F5A	99.0 (15)
С17—С16—Н16	120.2 (9)	F4A—C54A—F6A	107.7 (16)
С16—С17—Н17	119.9 (11)	F5A—C54A—Cu2	105.6 (13)
C18—C17—C16	120.8 (9)	F5A—C54A—F6A	108.3 (15)
C18—C17—H17	119.3 (10)	F6A—C54A—Cu2	112.6 (12)
C17—C18—H18	119.8 (10)	F7—C55—Cu2	122.4 (13)
C17—C18—C19	120.0 (8)	F7—C55—F9	100.0 (16)
C19—C18—H18	120.1 (10)	F8—C55—Cu2	117.4 (16)
С18—С19—Н19	119.9 (9)	F8—C55—F7	103.0 (14)
C18—C19—C20	119.7 (8)	F8—C55—F9	94.2 (14)
С20—С19—Н19	120.4 (9)	F9—C55—Cu2	115.0 (14)

C15—C20—C19	120.4 (8)	F7A—C55A—Cu2	119 (2)
С15—С20—Н20	119.9 (7)	F7A—C55A—F8	104 (2)
С19—С20—Н20	119.7 (8)	F7A—C55A—F9A	116 (2)
C22—C21—P2	123.1 (5)	F8—C55A—Cu2	113.2 (15)
C26—C21—P2	119.1 (5)	F8—C55A—F9A	103 (2)
C26—C21—C22	117.7 (7)	F9A—C55A—Cu2	100.1 (16)
C21—C22—H22	119.6 (7)	F10—C56A—Cu2	113.8 (8)
C23—C22—C21	120.7 (7)	F10A—C56A—Cu2	119.2 (10)
C23—C22—H22	119.6 (8)	F10A—C56A—F11A	108.1 (12)
С22—С23—Н23	119.7 (8)	F10A—C56A—F12A	111.6 (13)
C22—C23—C24	120.8 (7)	F11—C56A—Cu2	113.5 (9)
C24—C23—H23	119.5 (8)	F11—C56A—F10	99.7 (10)
C23—C24—H24	120.4 (9)	F11A—C56A—Cu2	111.5 (8)
C25—C24—C23	119.6 (7)	F11A—C56A—F12A	100.8 (11)
C25—C24—H24	120.0 (9)	F12—C56A—Cu2	121.5 (8)
C24—C25—H25	120.2 (8)	F12—C56A—F10	102.4 (10)
C24—C25—C26	119.5 (7)	F12—C56A—F11	103.1 (12)
С26—С25—Н25	120.3 (9)	F12A—C56A—Cu2	104.1 (9)
C21—C26—C25	121.6 (7)	Cl1_1—C1_1—Cl2_1	111.5 (14)
C21—C26—H26	118.9 (8)	Cl1_1—C1_1—H1A_1	109.3
С25—С26—Н26	119.5 (8)	Cl1_1—C1_1—H1B_1	109.3
С28—С27—Р3	123.4 (6)	Cl2_1—C1_1—H1A_1	109.3
C28—C27—C32	117.4 (8)	Cl2_1—C1_1—H1B_1	109.3
С32—С27—Р3	118.8 (6)	H1A_1-C1_1-H1B_1	108.0
С27—С28—Н28	119.1 (8)	Cl1_2C1_2Cl2_2	108.6 (14)
C27—C28—C29	121.8 (9)	Cl1_2—C1_2—H1A_2	110.0
С29—С28—Н28	119.1 (9)	Cl1_2—C1_2—H1B_2	110.0
С28—С29—Н29	121.1 (11)	Cl2_2—C1_2—H1A_2	110.0

C28—C29—C30	119.0 (10)	Cl2_2—C1_2—H1B_2	110.0
С30—С29—Н29	119.9 (11)	H1A_2-C1_2-H1B_2	108.4
Cu1—P1—C1—C2	-4.6 (8)	C14—P2—C21—C26	-132.2 (6)
Cu1—P1—C1—C6	176.4 (7)	C15—P2—C14—C13	172.6 (4)
Cu1—P1—C7—C8	-97.5 (6)	C15—P2—C21—C22	-64.8 (6)
Cu1—P1—C7—C12	78.4 (6)	C15—P2—C21—C26	117.6 (6)
Cu1—P1—C13—C14	-20.4 (5)	C15—C16—C17—C18	0 (2)
Cu1—P2—C14—C13	-54.4 (5)	C16—C15—C20—C19	-1.5 (13)
Cu1—P2—C15—C16	-108.5 (8)	C16—C17—C18—C19	-2.2 (19)
Cu1—P2—C15—C20	69.9 (7)	C17—C18—C19—C20	2.8 (15)
Cu1—P2—C21—C22	152.7 (5)	C18—C19—C20—C15	-0.9 (13)
Cu1—P2—C21—C26	-25.0 (7)	C20-C15-C16-C17	2.0 (16)
Cu1—P3—C27—C28	90.3 (7)	C21—P2—C14—C13	65.0 (5)
Cu1—P3—C27—C32	-83.1 (7)	C21—P2—C15—C16	114.5 (8)
Cu1—P3—C33—C34	-165.0 (6)	C21—P2—C15—C20	-67.0 (6)
Cu1—P3—C33—C38	13.2 (8)	C21—C22—C23—C24	-1.1 (11)
Cu1—P3—C39—C40	-17.7 (5)	C22—C21—C26—C25	-1.5 (12)
Cu1—P4—C40—C39	-55.0 (5)	C22—C23—C24—C25	-1.0 (12)
Cu1—P4—C41—C42	4.2 (7)	C23—C24—C25—C26	1.7 (13)
Cu1—P4—C41—C46	177.8 (5)	C24—C25—C26—C21	-0.4 (13)
Cu1—P4—C47—C48	81.9 (8)	C26—C21—C22—C23	2.3 (11)
Cu1—P4—C47—C52	-94.8 (7)	C27—P3—C33—C34	59.9 (8)
P1—C1—C2—C3	-178.2 (8)	C27—P3—C33—C38	-121.9 (7)
P1—C1—C6—C5	178.7 (8)	C27—P3—C39—C40	108.8 (5)
P1—C7—C8—C9	176.1 (6)	C27—C28—C29—C30	3.8 (14)
P1—C7—C12—C11	-176.1 (6)	C28—C27—C32—C31	-2.2 (13)
P1—C13—C14—P2	50.3 (6)	C28—C29—C30—C31	-2.7 (16)
P2-C15-C16-C17	-179.6 (10)	C29—C30—C31—C32	-0.6 (16)

P2—C15—C20—C19	-180.0 (6)	C30—C31—C32—C27	3.2 (15)
P2—C21—C22—C23	-175.4 (6)	C32—C27—C28—C29	-1.3 (12)
P2—C21—C26—C25	176.3 (7)	C33—P3—C27—C28	-134.0 (7)
P3—C27—C28—C29	-174.8 (7)	C33—P3—C27—C32	52.5 (7)
P3—C27—C32—C31	171.6 (7)	C33—P3—C39—C40	-143.3 (5)
P3—C33—C34—C35	177.7 (8)	C33—C34—C35—C36	-0.1 (16)
P3—C33—C38—C37	-177.5 (7)	C34—C33—C38—C37	0.7 (13)
P3—C39—C40—P4	49.2 (6)	C34—C35—C36—C37	0.3 (17)
P4—C41—C42—C43	171.5 (7)	C35—C36—C37—C38	-0.1 (16)
P4—C41—C46—C45	-173.2 (7)	C36—C37—C38—C33	-0.4 (14)
P4—C47—C48—C49	-177.0 (10)	C38—C33—C34—C35	-0.4 (14)
P4—C47—C52—C51	175.0 (7)	C39—P3—C27—C28	-26.8 (7)
C1—P1—C7—C8	39.0 (7)	C39—P3—C27—C32	159.8 (6)
C1—P1—C7—C12	-145.0 (6)	C39—P3—C33—C34	-50.2 (8)
C1—P1—C13—C14	-145.8 (5)	C39—P3—C33—C38	127.9 (7)
C1—C2—C3—C4	-1.0 (16)	C40—P4—C41—C42	-102.6 (6)
C2—C1—C6—C5	-0.2 (14)	C40—P4—C41—C46	71.1 (7)
C2—C3—C4—C5	0.6 (18)	C40—P4—C47—C48	-165.9 (7)
C3—C4—C5—C6	0.0 (18)	C40—P4—C47—C52	17.4 (8)
C4—C5—C6—C1	-0.2 (17)	C41—P4—C40—C39	67.1 (6)
C6—C1—C2—C3	0.8 (14)	C41—P4—C47—C48	-58.2 (8)
C7—P1—C1—C2	-140.2 (7)	C41—P4—C47—C52	125.1 (7)
C7—P1—C1—C6	40.9 (8)	C41—C42—C43—C44	1.5 (13)
C7—P1—C13—C14	103.8 (5)	C42—C41—C46—C45	0.6 (12)
C7—C8—C9—C10	0.4 (12)	C42—C43—C44—C45	1.2 (13)
C8—C7—C12—C11	0.0 (11)	C43—C44—C45—C46	-3.0 (13)
C8—C9—C10—C11	-0.9 (13)	C44—C45—C46—C41	2.1 (14)
C9—C10—C11—C12	0.9 (13)	C46—C41—C42—C43	-2.4 (12)

C10—C11—C12—C7	-0.5 (13)	C47—P4—C40—C39	176.8 (5)
С12—С7—С8—С9	0.0 (11)	C47—P4—C41—C42	146.2 (6)
C13—P1—C1—C2	110.3 (7)	C47—P4—C41—C46	-40.2 (7)
C13—P1—C1—C6	-68.6 (8)	C47—C48—C49—C50	1 (2)
C13—P1—C7—C8	147.0 (6)	C48—C47—C52—C51	-1.7 (14)
C13—P1—C7—C12	-37.1 (7)	C48—C49—C50—C51	0 (2)
C14—P2—C15—C16	7.2 (9)	C49—C50—C51—C52	-2.1 (18)
C14—P2—C15—C20	-174.4 (6)	C50—C51—C52—C47	2.8 (16)
C14—P2—C21—C22	45.5 (6)	C52—C47—C48—C49	-0.1 (16)

References:

[S1] Data collection with APEX2. Bruker (2007). Bruker AXS Inc., Madison, Wisconsin, USA.

[S2] Cell refinement and data reduction with Bruker SAINT. Bruker (2007). Bruker AXS Inc., Madison, Wisconsin, USA.

[S3] Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

[S4] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

4. Reactivity studies of 3-5 with arylboronic acids

4.1 Optimization of reaction of 3 with 4-methoxyphenylboronic acid

In an oven-dried 25-mL Schlenk tube equipped with a stir bar were added $[(DPPE)_2Cu]^+[Cu(CF_3)_4]^-$ (3) (120 mg, 0.1 mmol), 4-methoxyphenylboronic acid (6a) (30 mg, 0.2 mmol), additive (0.2 mmol) and 4, 4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The Schlenk tube was evacuated and refilled with dry oxygen. Dry solvent (1 mL) was then added by syringe. The contents in the tube were vigorously stirred for specified time at specified temperature (heated in an oil bath). The mixture was allowed to cool to room temperature, diluted with Et₂O and filtered through a pad of Celite. The Celite pad was washed with Et₂O. The combined filtrate was washed with brine, and then concentrated to extrude ether. The residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yield.

Figure S10. ¹⁹F NMR determination of the reaction mixture of reaction of complex 3 with 6a under the reaction conditions of entry 7 in Table 1.

For example, Figure S10 shows the ¹⁹F NMR determination of the reaction solution of entry 7 in Table 1 after workup described above. As can be seen, quantitative conversion of complex **3** was observed. The new signal at -62.5 ppm corresponds to the formation of trifluoromethylated arene **7a** while the signal at -116.4 ppm is the internal standard 4, 4'-difluorobiphenyl. The trifluoromethylation yield was thus determined to be 99% relative to **6a**.

4.2 General procedure for reaction of 3 with various arylboronic acids

In an oven-dried 25-mL Schlenk tube equipped with a stir bar were added $[(DPPE)_2Cu]^+[Cu(CF_3)_4]^-$ (3) (120 mg, 0.1 mmol), arylboronic acid (0.2 mmol), **KF** (0.2 mmol), 4 Å MS and 4, 4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The Schlenk tube was evacuated and refilled with dry oxygen. Dry **toluene** (1 mL) was then added by syringe. The contents in the tube were vigorously stirred and heated in an oil bath at 80°C for 18 hours. The mixture was allowed to cool to room temperature, diluted with Et2O and filtered through a pad of Celite. The Celite pad was washed with Et2O. The combined filtrates were concentrated to extrude ether, and the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yields.

4.3 General procedure for reaction of 4 with various arylboronic acids

In an oven-dried 25-mL Schlenk tube equipped with a stir bar were added $[(BINAP)_2Cu]^+[Cu(CF_3)_4]^-$ (4) (165 mg, 0.1 mmol), arylboronic acid (0.2 mmol), **AgF** (0.2 mmol), 4 Å MS and 4, 4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The Schlenk tube was evacuated and refilled with dry oxygen. Dry **toluene** (1 mL) was then added by syringe. The contents in the tube were vigorously stirred and heated in an oil bath at 80°C for 18 hours. The mixture was allowed to cool to room temperature, diluted with ether and filtered through a pad of Celite. The Celite pad was washed with Et2O. The combined filtrates were concentrated to extrude ether, and the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yields.

4.4 General procedure for reaction of 5 with various arylboronic acids

In an oven-dried 25-mL Schlenk tube equipped with a stir bar were added $[(XantPhos)_2Cu]^+[Cu(CF_3)_4]^-$ (5) (156 mg, 0.1 mmol), arylboronic acid (0.2 mmol), **AgF** or **KF** (0.2 mmol), 4 Å MS and 4, 4'-difluorobiphenyl (internal standard; 38 mg, 0.2 mmol). The Schlenk tube was evacuated and refilled with dry oxygen. Dry **toluene** (1 mL) was then added by syringe. The contents in the tube were vigorously stirred and heated in an oil bath at 80°C for 18 hours. The mixture was allowed to cool to room temperature, diluted with ether and filtered through a pad of Celite. The Celite pad was washed with Et2O. The combined filtrates were concentrated to extrude ether, and the residue mixture was analyzed by ¹⁹F NMR spectroscopy to determine the reaction yields.