Supporting information

Electron ionization mass spectrometric analysis of air- and moisture-sensitive organometallic compounds

Johanne Penafiel, Amelia V. Hesketh, Ori Granot* and J. Scott McIndoe*

Department of Chemistry, University of Victoria, P.O. Box 3065 Victoria, BC V8W3V6, Canada.
Fax: +1 (250) 721-7147; Tel: +1 (250) 721-7181; E-mail: orig@uvic.ca, mcindoe@uvic.ca

Supplementary EI Mass Spectra
Figure SI 1. EI-MS spectrum of ZrCp₂Me₂ (m/z 250). Top: Spectrum obtained using the glove chamber. Bottom: The measurement was performed under air (no glove chamber). Peaks marked * are unassigned decomposition products.

Figure SI 2. EI-MS spectrum of ZrCp₂Me₂ (m/z 250). The sample was exposed to air 45 min before measurement, which was performed under air (no glove chamber). Undefined dimeric oxidized products with abundant fragments at m/z 390, m/z 474 and m/z 487 were observed.
Figure SI 3. EI-MS spectra of Dy\([\text{N(TMS)}_2]_3\) (top) and Nd\([\text{N(TMS)}_2]_3\) (bottom) using the glove chamber. Inset: actual spectrum (black) and predicted isotope pattern (green bars).
Figure SI 4. EI-MS spectra of Rh(PPh$_3$)$_3$Cl using the glove chamber. The spectra shows fragments at m/z 262, m/z 184, m/z 108 and m/z 77 which are characteristic for triphenylphosphine. This suggests that the poor thermal stability of the Wilkinson’s catalyst do not allow for EI-MS analysis.