Electronic Supplementary Information

A biotin-conjugated glutathione-responsive FRET-based fluorescent probe with a

ferrocenyl BODIPY as the dark quencher

Wen-Jing Shi, Pui-Chi Lo,* Shirui Zhao, Roy C. H. Wong, Qiong Wang, Wing-Ping Fong and

Dennis K. P. Ng*

Contents

- Fig. S1 (a) UV-Vis and (b) fluorescence ($\lambda_{ex} = 610 \text{ nm}$) spectra of 7, 10 and 13a (all at 1 μ M) in DMF. The inset of figure (b) shows the fluorescence observed for these compounds upon excitation at 365 nm.
- Fig. S2 Change in (a) UV-Vis and (b) fluorescence ($\lambda_{ex} = 610 \text{ nm}$) spectra of 13a (2 μ M) in the presence of GSH (2 mM) in PBS with 0.5% Tween 80 over 10 h at 37 °C. The inset of figure (b) shows the time-dependent fluorescence intensity at 650 nm.
- Fig. S3 Comparison of the relative intracellular fluorescence intensity of 15 in CHO-K1 and A549 cells. Data are expressed as the mean \pm standard deviation of three independent experiments.
- Fig. S4 (a) Bright field and confocal fluorescence images of A549 cells after incubation with GSH-OEt (10 mM) for 30 min, followed with 13a or 13b (2 μ M) for 4 h. (b) Comparison of the relative intracellular fluorescence intensity of 13a and 13b with the pre-treatment with GSH-OEt. Data are expressed as the mean \pm standard deviation (number of cells = 50).
- 1 H and 13 C{ 1 H} NMR spectra of all the new compounds

Fig. S1 (a) UV-Vis and (b) fluorescence ($\lambda_{ex} = 610$ nm) spectra of 7, 10 and 13a (all at 1 μ M) in DMF. The inset of figure (b) shows the fluorescence observed for these compounds upon excitation at 365 nm.

Fig. S2 Change in (a) UV-Vis and (b) fluorescence ($\lambda_{ex} = 610$ nm) spectra of 13a (2 μ M) in the presence of GSH (2 mM) in PBS with 0.5% Tween 80 over 10 h at 37 °C. The inset of figure (b) shows the time-dependent fluorescence intensity at 650 nm.

Fig. S3 Comparison of the relative intracellular fluorescence intensity of 15 in CHO-K1 and A549 cells. Data are expressed as the mean \pm standard deviation of three independent experiments

Fig. S4 (a) Bright field and confocal fluorescence images of A549 cells after incubation with GSH-OEt (10 mM) for 30 min, followed with 13a or 13b (2 μ M) for 4 h. (b) Comparison of the relative intracellular fluorescence intensity of 13a and 13b with the pre-treatment with GSH-OEt. Data are expressed as the mean \pm standard deviation (number of cells = 50).

¹H NMR spectrum of **5** in CDCb

 $^{13}C\{^{1}H\}$ NMR spectrum of 5 in CDCb

¹H NMR spectrum of **7** in CDCb

 ${}^{13}C{}^{1}H$ NMR spectrum of 7 in DMSO-d₆

¹H NMR spectrum of **10** in CDCb

$^{13}C\{^{1}H\}$ NMR spectrum of 10 in CDCb

¹H NMR spectrum of **12a** in CDCb

$^{13}C\{^{1}H\}$ NMR spectrum of 12a in CDCl₃

¹H NMR spectrum of **12b** in CDCb

 $^{13}C\{^{1}H\}$ NMR spectrum of 12b in CDCl3

¹H NMR spectrum of **13a** in CDCl₃

 $^{13}C\{^{1}H\}$ NMR spectrum of 13a in CDCl3

¹H NMR spectrum of **13b** in CDCb

 $^{13}C\{^{1}H\}$ NMR spectrum of 13b in CDCl3

¹H NMR spectrum of **14** in CDCl₃

$^{13}C\{^{1}H\}$ NMR spectrum of 14 in CDCh

159.70	152.73	141.88 137.96 135.80 129.80 129.80 129.10 129.10 117.58 11	78.21 77.148 77.16 76.01 77.06 76.01 70.70 70.70 56.14 56.14 56.14	14.91
M		SSSIVE VE		

¹H NMR spectrum of **15** in CDCb

 $^{13}C\{^{1}H\}$ NMR spectrum of 15 in CDCb

