Supporting Information

A hybrid terpyridine-based bis(diphenylphosphino)amine ligand, terpy-C$_6$H$_4$N(PPh$_2$)$_2$: Synthesis, coordination chemistry and photoluminescence studies

Susmita Naik,a Saurabh Kumar,a Joel T. Magueb and Maravanji S. Balakrishna*$_a$

a Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

b Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States

Table of contents:

1 Materials and Physical Measurements
2 Experimental Section
3 Single Crystal X-ray Diffraction Analyses
4 Crystal data for compounds 1, 2, 3 and 4
5 References
6 NMR spectra
7 Bond lengths and bond angles for compounds 1, 2, 3 and 4
1. Materials and Physical Measurements

All experimental manipulations were performed under inert atmosphere of dry nitrogen or argon, using standard Schlenk line techniques. All the solvents were purified by conventional procedures and distilled prior to use. Other reagents were obtained from commercial sources and used as received without further purification. Metal reagents \([\text{CpRu(PPH}_3\text{)}_2\text{Cl}]\), \([\text{Pd(COD)Cl}_2]\), \([\text{AuCl(SMe}_2\text{)}]^3\) and 4’-(p-aminophenyl)terpyridine were prepared according to published procedures. The \(^1\text{H}\) and \(^{31}\text{P}\{^1\text{H}\} \text{NMR (}\delta\text{ in ppm)} spectra were obtained from either Bruker Avance-400 MHz or Bruker Avance- 500 MHz spectrometer. The spectra were recorded in CDCl\(_3\) (or DMSO-\(d_6\)) solutions with CDCl\(_3\) (or DMSO-\(d_6\)) as an internal lock; TMS and 85\% H\(_3\)PO\(_4\) were used as internal and external standards for \(^1\text{H}\) and \(^{31}\text{P}\{^1\text{H}\} \text{NMR, respectively. Positive values indicate downfield shifts. The UV-Vis and Fluorescence spectra were recorded at 298 K on Perkin-Elmer UV-Vis and fluorescence spectrometers, respectively, using a quartz cell (1 cm width). Mass spectra were recorded on BRUKER mass spectrometer using Electro-spray ionization mass spectrometry (ESI-MS) method. Microanalysis were carried out on a Carlo Erba (model 1106) elemental analyzer. Melting points of all compounds were determined on a Veego melting point apparatus and are uncorrected.

2. Experimental Section

Synthesis of 4’-{(p-(Ph\(_2\)P)\(_2\)NC\(_6\)H\(_4\))}-2,2’:6’2”-terpy (1)

A solution of chlorodiphenylphosphine (3.57 g, 2.9 mL 16.2 mmol) in dichloromethane (10 mL) was added dropwise to the suspension of 4’-(p-aminophenyl)-2,2’:6’,2”-terpyridine (2.5 g, 7.30 mmol) and triethylamine (7.8 g, 77.1 mmol) in dichloromethane (40 mL) at 0 °C. The dark brown colored solution thus obtained was stirred at room temperature overnight. The reaction mixture was quenched with degassed water and the organic phase was separated, dried with sodium sulphate. The solvent was evaporated under reduced pressure and the residue obtained was washed with diethyl ether (3× 50 mL). The crude residue was passed through neutral alumina using dichloromethane as eluent to get colorless solid product. Analytically pure X-ray quality crystals of 1 were obtained by crystallizing from a 1:1 mixture of dichloromethane and acetonitrile. Yield: 48\% (2.42 g) MP: 170-171 °C. \(^{31}\text{P}\{^1\text{H}\} \text{NMR (CDCl}_3\): 69.3 ppm (s). \(^1\text{H}\) NMR (CDCl\(_3\)) \(\delta\): 6.74 (d, H7’, 2H, \(3J_{HH} = 8.5\) Hz), 7.30-7.42 (m, ArH, H5,5’, 22H), 7.51 (d,
H8,8’, 2H, \(J_{HH} = 8.5 \) Hz), 7.85 (td, H4,4”, 2H, \(J_{HH} = 7.1 \) Hz, \(J_{HH} = 1.8 \) Hz), 8.60 (s, H3’,5’, 2H), 8.63 (d, H3,3”, 2H, \(J_{HH} = 7.9 \) Hz), 8.69 (d, H6,6”, 2H, \(J_{HH} = 4.0 \) Hz). ESI(MS): m/z = 693.23 [M+H]⁺. Anal. Calcd. for C₄₅H₃₄N₄P₂: C, 78.00; H, 4.95; N, 8.09 %. Found: C, 78.14; H, 4.57; N, 8.07 %.

Synthesis of [(Ru(PPh₃)(Cp){4′-{p-(Ph₂P)₂NC₆H₄}-2,2’:6’2’’-terpy}]Cl (2)

A toluene solution (5 mL) of [CpRu(PPh₃)₂Cl] (0.021g, 0.028 mmol) was added to a stirred solution 1 (0.020 g, 0.028 mmol) also in toluene (5 mL). The color of the reaction mixture changed from white to yellow. Further, reaction mixture was allowed to reflux for 4 h. The solvent was removed under vacuum and residue was washed with petroleum ether, resulting in the pure compound 2. Crystals suitable for X-ray analysis were grown from the saturated solution of chloroform. Yield: 82 % (0.026 g). MP: 220 °C (dec.). \(^{31}P\) NMR (CDCl₃) \(\delta \): 44.2 (t, PPh₃, 1P) and 79.4 (d, PPh₂, 2P) (\(J_{PP} = 32.5 \) Hz). \(^1H\) NMR (CDCl₃) \(\delta \): 4.48 (s, C⁵H⁵, 5H) 6.60 (d, H7,7′, 2H, \(J_{HH} = 8.6 \) Hz), 7.11-7.34 (m, ArH, H5,5′, 22H), 7.48 (d, H8,8′, 2H, \(J_{HH} = 8.6 \) Hz), 7.59 (dt, H4,4′, 2H, \(J_{HH} = 20.9, 6.6 \) Hz), 7.88 – 7.82(m, 15H), 8.54 (s, H3’,5’, 2H), 8.65 – 8.61 (br t, H3,3’, H6,6’, 4H). ESI(MS): m/z = 1121.26 [M-Cl]⁺. Anal. Calcd. for C₆₈H₅₄N₄P₃RuCl: C, 70.61; H, 4.70; N, 4.84 %. Found: C, 70.77; H, 4.45; N, 4.65 %.

Synthesis of cis-[PdCl₂{4′-{p-(Ph₂P)₂NC₆H₄}-2,2’:6’2’’-terpy}] (3)

A solution of [Pd(COD)Cl₂] (0.012 g, 0.043 mmol) in toluene (5 mL) was added dropwise to the solution of 1 (0.030 g, 0.043 mmol) also in toluene (5 mL) and the reaction mixture was stirred for 5 h at ambient temperature. The solvent was removed under reduced pressure and the residue obtained was washed form petroleum ether to get analytically pure product 3 as an orange solid. Crystals of 3 suitable for single crystal X-ray diffraction were grown by the slow adding petroleum ether into the saturated solution of chloroform. Yield: 79 % (0.029 g). MP: 215-218 °C. \(^{31}P\) NMR (CDCl₃) \(\delta \): 34.9 (s). \(^1H\) NMR (CDCl₃) \(\delta \): 6.67 (d, H7,7′, 2H, \(J_{HH} = 7.9 \) Hz), 7.36-7.62 (m, ArH, H5,5’, 22H), 7.66 (d, H8,8′, 2H, \(J_{HH} = 7.9 \) Hz), 7.94 (t, H4,4′, 2H, \(J_{HH} = 7.9 \) Hz), 8.58 (s, H3’,5’, 2H), 8.65 (br t, H3,3’, H6,6’, 4H). ESI(MS): m/z = 830.15 [M-Cl]⁺. Anal. Calcd. for C₆₈H₅₄N₄P₂PdCl₂: C, 62.01; H, 3.94; N, 6.44 %. Found: C, 62.01; H, 3.63; N, 6.25 %.

Synthesis of [(AuCl)₂{4′-{p-(Ph₂P)₂NC₆H₄}-2,2’:6’2’’-terpy}] (4)
A solution of \([\text{AuCl(SMe}_2\text{)}]\) (0.025 g, 0.086 mmol) in dichloromethane (5 mL) was added dropwise to the solution of 1 (0.030 g, 0.043 mmol) also in dichloromethane (5 mL). The resulting solution was stirred at room temperature for 5 h, in the minimum exposure of light. During which its color changed from white to yellow. The solvent was evaporated under reduced pressure and residue was washed form petroleum ether (5 mL). Crystals of 4 suitable for single crystal X-ray diffraction were obtained from a 1:1 mixture of dichloromethane and toluene at 0 °C. Yield: 78 % (0.038 g). MP: 192-194 °C (dec.).

\(^{31}\text{P}\{^1\text{H}\} \text{ NMR (CDCl}_3\} \delta: 88.3 \text{ (s)}. \)

\(^1\text{H} \text{ NMR (CDCl}_3\} \delta: 6.40 \text{ (d, H7,7′, 2H, } \text{J}_{HH} = 8.5 \text{ Hz)}, 7.35-7.72 \text{ (m, ArH, H5,5′, H8,8′, 24H)}, 7.88 \text{ (td, H4,4′, 2H, } \text{J}_{HH} = 7.1 \text{ Hz, } \text{J}_{HH} = 1.8 \text{ Hz)}, 8.49 \text{ (s, H3′,5′, 2H)}, 8.63 \text{ (d, H3,3′, 2H, } \text{J}_{HH} = 7.9 \text{ Hz)}, 8.67 \text{ (d, H6,6′, 2H, } \text{J}_{HH} = 4.0 \text{ Hz)}. \text{ ESI(MS): m/z = 1179.09 [M+Na}^+\text{]. Anal. Calcd. for C}_45\text{H}_34\text{N}_4\text{P}_2\text{Au}_2\text{Cl}_2: C, 46.69; H, 2.96; N, 4.84 %. Found: C, 46.76; H, 2.86; N, 4.42 %.

\textbf{Synthesis of [Au}\{^4′-\{p-(\text{Ph}_2\text{P})_2\text{NC}_6\text{H}_4\}_2-2,2′:6′2′′-\text{terpy}\}\}{\text{2(OTf)}_2 (5)}\text{ }

To the solution of 4 (0.020 g, 0.017 mmol) in dichloromethane (10 mL) was added AgOTf (0.008 g, 0.034 mmol) and the reaction mixture was stirred for 1 h at room temperature. The AgCl precipitate formed was filtered through celite and the filtrate was added dropwise to the solution of 1 (0.011 g, 0.017 mmol). The yellow color reaction mixture was further stirred for 2 h and the solution was concentrated to 2 mL, added petroleum ether to afford yellow color precipitate. The precipitate was separated and dried under reduced pressure to get analytically pure product 5. Yield: 80 % (0.028 g). MP: 148-150 °C. \(^{31}\text{P}\{^1\text{H}\} \text{ NMR (CDCl}_3\} \delta: 104.3 \text{ (s)}. \)

\(^1\text{H} \text{ NMR (CDCl}_3\} \delta: 6.46 \text{ (d, H7,7′, 2H, } \text{J}_{HH} = 8.0 \text{ Hz)}, 7.36-7.67 \text{ (m, ArH, H5,5′, H8,8′, 24H)}, 8.02 \text{ (br s, H4,4′, 2H)}, 8.61 \text{ (s, H3′,5′, 2H)}, 8.74 \text{ (br s, H3,3′, 2H)}, 8.81 \text{ (br s, H6,6′, 2H)}. \text{ Anal. Calcd. for C}_92\text{H}_68\text{N}_8\text{P}_4\text{Au}_2\text{S}_2\text{F}_6\text{O}_6: C, 53.19; H, 3.30; N, 5.39; S, 3.09 %. Found: C, 53.23; H, 3.66; N, 5.18; S, 3.19 %.

\textbf{Synthesis of [(AuCl)_2}\{^4′-\{p-(\text{Ph}_2\text{P})_2\text{NC}_6\text{H}_4\}_2-2,2′:6′2′′-\text{terpy}\}\}{\text{Zn(OTf)}_2 (6)}\text{ }

It was prepared by using Zn(OTf)_2 (0.0115 g, 0.0318 mmol) in tetrahydrofuran (5 mL) and 4 (0.0736 g, 0.0636 mmol) in dichloromethane (5 mL). The turbid yellow color solution was stirred at room temperature for 5 h. The solvent was evaporated under reduced pressure and the residue obtained was dissolved in 5 mL of dichloromethane and diluted with 1 mL of petroleum ether to get analytically product of 6 as microcrystalline solid. Yield: 73 % (0.062 g). MP: 238-239 °C.
(decomp). 31P{1H} NMR (DMSO-d$_6$) δ: 86.2 (s). 1H NMR (DMSO-d$_6$) δ: 6.80 (d, H7,7″, 2H, 3J$_{HH}$ = 8.5 Hz), 7.39-7.80 (m, ArH, H5,5″, 22H), 7.82 (d, H6,6″, 2H, 3J$_{HH}$ = 8.0 Hz), 7.88 (d, H8,8″, 2H, 3J$_{HH}$ = 7.9 Hz), 9.11 (s, H3′,5′, 2H). Anal. Calcd for C$_{92}$H$_{68}$N$_8$P$_4$Au$_4$Cl$_4$F$_6$O$_6$S$_2$Zn: C, 41.25; H, 2.56; N, 4.18; S, 2.39 %. Found: C, 41.65; H, 2.56; N, 3.90; S, 2.34 %.

3. X-ray Crystallography.

A crystal of each of the compounds in the present work suitable for single-crystal X-ray diffraction studies was mounted in a cryoloop with a drop of paratone oil and placed in the cold nitrogen stream of the kryoflex attachment of the Bruker APEX CCD diffractometer for complex 1, 2 and Rigaku Saturn724 diffractometer for complex 3 and 4. Data were collected at 100 K using graphite-monochromated Mo-Kα radiation (λ_α = 0.71073 Å) with the ω-scan technique. The data were reduced by using Crystal Clear- SMExpert 2.1 b24 software. Crystal data and summary of data collection for compounds 1, 2, 3 and 4 are given in Table S1. The structures were solved by direct methods and refined by least-squares against F2 utilizing the software packages SHELXL-97/2013,5 SIR-926 and WINGX.7 All non-hydrogen atoms were refined anisotropically. Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1501300 (1), 1501301 (2), 1501302 (3) and 1501303 (4).
4. **Table S1.** Crystallographic Data for Compounds 1, 2, 3 and 4.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. formula</td>
<td>C_{45}H_{34}N_{4}P_{2}·CH_{2}Cl_{2}</td>
<td>C_{68}H_{54}N_{4}P_{3}RuCl·5(CHCl_{3})</td>
<td>C_{45}H_{34}Cl_{3}N_{4}P_{2}Pd·2(CHCl_{3})</td>
<td>C_{45}H_{34}Au_{2}Cl_{2}N_{4}P_{2}·C_{7}H_{8}</td>
</tr>
<tr>
<td>fw</td>
<td>777.63</td>
<td>1753.42</td>
<td>1108.74</td>
<td>1249.67</td>
</tr>
<tr>
<td>Cryst. Sys.</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>monoclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>space group</td>
<td>P2₁/n</td>
<td>P-1</td>
<td>C2/c</td>
<td>P-1</td>
</tr>
<tr>
<td>a, Å</td>
<td>15.467(2)</td>
<td>10.247(3)</td>
<td>14.826(11)</td>
<td>12.903(6)</td>
</tr>
<tr>
<td>b, Å</td>
<td>9.3663(12)</td>
<td>13.871(4)</td>
<td>18.064(10)</td>
<td>13.059(6)</td>
</tr>
<tr>
<td>c, Å</td>
<td>26.864(3)</td>
<td>27.160(8)</td>
<td>18.267(14)</td>
<td>16.715(6)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
<td>96.116(4)</td>
<td>90</td>
<td>98.626(3)</td>
</tr>
<tr>
<td>β, deg</td>
<td>100.924(2)</td>
<td>101.187(4)</td>
<td>99.056(7)</td>
<td>92.793(3)</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
<td>92.193(4)</td>
<td>90</td>
<td>97.092(4)</td>
</tr>
<tr>
<td>V, Å³</td>
<td>3821.2(8)</td>
<td>3758.63</td>
<td>4831.7(6)</td>
<td>2757.0(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>D_{calc}, g cm⁻³</td>
<td>1.352</td>
<td>1.549</td>
<td>1.524</td>
<td>1.5053</td>
</tr>
<tr>
<td>μ(MoKα), mm⁻¹</td>
<td>0.294</td>
<td>0.887</td>
<td>0.931</td>
<td>5.505</td>
</tr>
<tr>
<td>F(000)</td>
<td>1616</td>
<td>1772</td>
<td>2232.0</td>
<td>1208.0</td>
</tr>
<tr>
<td>T(K)</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>2θ range, deg</td>
<td>2.3-28.4</td>
<td>2.2-26.3</td>
<td>4.4-50</td>
<td>4.3-50</td>
</tr>
<tr>
<td>Total no. reflns</td>
<td>115450</td>
<td>68342</td>
<td>15799</td>
<td>53561</td>
</tr>
<tr>
<td>No. of indep reflns</td>
<td>9448 [R_{int} = 0.106]</td>
<td>14677 [R_{int} = 0.104]</td>
<td>4246 [R_{int} = 0.1070]</td>
<td>9681 [R_{int} = 0.0474]</td>
</tr>
<tr>
<td>S</td>
<td>1.03</td>
<td>1.08</td>
<td>1.05</td>
<td>1.03</td>
</tr>
<tr>
<td>R₁</td>
<td>0.0660</td>
<td>0.0821</td>
<td>0.0527</td>
<td>0.0347</td>
</tr>
<tr>
<td>wR₂</td>
<td>0.1992</td>
<td>0.2059</td>
<td>0.1082</td>
<td>0.0875</td>
</tr>
</tbody>
</table>

5. References.

6. NMR Spectra

Figure S1. 1H NMR spectrum of 4′-(p-aminophenyl)terpyridine in CDCl$_3$. Expanded view of aromatic region shown in inset.
Figure S2. 31P(1H) NMR spectrum of 1 in CDCl$_3$.
Figure S3. 1H NMR spectrum of 1 in CDCl$_3$.
Figure S4. 31P{1H} NMR spectrum of 2 in CDCl$_3$. Expanded view of doublet (PPh$_2$) and triplet (PPh$_3$) peaks are shown in inset.
Figure S5. 1H NMR spectrum of 2 in CDCl$_3$.
Figure S6. 31P{H} NMR spectrum of 3 in CDCl$_3$.
Figure S7. 31P{¹H} NMR spectrum of 4 in CDCl$_3$.
Figure S8. 31P{H} NMR spectrum of 5 in CDCl$_3$.
Figure S9. 31P{1H} NMR spectrum of 6 in DMSO-d_6.
Figure S10. Comparative 1H NMR spectra of complexes 4 and 6.
7. Bond lengths (Å) and bond angles (°) for 1

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 N4</td>
<td>1.731(2)</td>
</tr>
<tr>
<td>P1 C22</td>
<td>1.826(3)</td>
</tr>
<tr>
<td>P1 C28</td>
<td>1.836(3)</td>
</tr>
<tr>
<td>P2 N4</td>
<td>1.721(2)</td>
</tr>
<tr>
<td>P2 C34</td>
<td>1.835(3)</td>
</tr>
<tr>
<td>P2 C40</td>
<td>1.833(3)</td>
</tr>
<tr>
<td>N1 C1</td>
<td>1.337(4)</td>
</tr>
<tr>
<td>N1 C5</td>
<td>1.345(4)</td>
</tr>
<tr>
<td>N2 C6</td>
<td>1.339(4)</td>
</tr>
<tr>
<td>N2 C10</td>
<td>1.341(4)</td>
</tr>
<tr>
<td>N3 C11</td>
<td>1.339(4)</td>
</tr>
<tr>
<td>N3 C15</td>
<td>1.335(5)</td>
</tr>
<tr>
<td>N4 C19</td>
<td>1.440(3)</td>
</tr>
<tr>
<td>C1 H1</td>
<td>0.95</td>
</tr>
<tr>
<td>C1 C2</td>
<td>1.382(4)</td>
</tr>
<tr>
<td>C2 H2</td>
<td>0.951</td>
</tr>
<tr>
<td>C2 C3</td>
<td>1.377(4)</td>
</tr>
<tr>
<td>C3 H3</td>
<td>0.95</td>
</tr>
<tr>
<td>C3 C4</td>
<td>1.388(5)</td>
</tr>
<tr>
<td>C4 H4</td>
<td>0.949</td>
</tr>
<tr>
<td>C4 C5</td>
<td>1.397(4)</td>
</tr>
<tr>
<td>C5 C6</td>
<td>1.491(4)</td>
</tr>
<tr>
<td>C6 C7</td>
<td>1.401(4)</td>
</tr>
<tr>
<td>C7 H7</td>
<td>0.951</td>
</tr>
<tr>
<td>C7 C8</td>
<td>1.396(4)</td>
</tr>
<tr>
<td>C8 C9</td>
<td>1.402(4)</td>
</tr>
<tr>
<td>C8 C16</td>
<td>1.483(3)</td>
</tr>
<tr>
<td>C9 H9</td>
<td>0.95</td>
</tr>
<tr>
<td>C9 C10</td>
<td>1.395(4)</td>
</tr>
</tbody>
</table>
C10 C11 1.493(4)
C11 C12 1.387(4)
C12 H12 0.951
C12 C13 1.394(4)
C13 H13 0.949
C13 C14 1.376(5)
C14 H14 0.95
C14 C15 1.387(4)
C15 H15 0.95
C15 C16 1.405(4)
C16 C21 1.392(4)
C17 H17 0.95
C17 C18 1.390(4)
C18 H18 0.951
C18 C19 1.389(4)
C19 C20 1.395(4)
C20 H20 0.951
C20 C21 1.389(4)
C21 H21 0.95
C22 C23 1.401(4)
C22 C27 1.402(5)
C23 H23 0.949
C23 C24 1.394(5)
C24 H24 0.949
C24 C25 1.403(7)
C25 H25 0.95
C25 C26 1.381(7)
C26 H26 0.95
C26 C27 1.385(5)
C27 H27 0.951
<table>
<thead>
<tr>
<th>C28</th>
<th>C29</th>
<th>1.394(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C28</td>
<td>C33</td>
<td>1.406(4)</td>
</tr>
<tr>
<td>C29</td>
<td>H29</td>
<td>0.95</td>
</tr>
<tr>
<td>C29</td>
<td>C30</td>
<td>1.400(5)</td>
</tr>
<tr>
<td>C30</td>
<td>H30</td>
<td>0.949</td>
</tr>
<tr>
<td>C30</td>
<td>C31</td>
<td>1.380(4)</td>
</tr>
<tr>
<td>C31</td>
<td>H31</td>
<td>0.951</td>
</tr>
<tr>
<td>C31</td>
<td>C32</td>
<td>1.393(4)</td>
</tr>
<tr>
<td>C32</td>
<td>H32</td>
<td>0.95</td>
</tr>
<tr>
<td>C32</td>
<td>C33</td>
<td>1.385(4)</td>
</tr>
<tr>
<td>C33</td>
<td>H33</td>
<td>0.95</td>
</tr>
<tr>
<td>C34</td>
<td>C35</td>
<td>1.395(4)</td>
</tr>
<tr>
<td>C34</td>
<td>C39</td>
<td>1.402(4)</td>
</tr>
<tr>
<td>C35</td>
<td>H35</td>
<td>0.95</td>
</tr>
<tr>
<td>C35</td>
<td>C36</td>
<td>1.394(4)</td>
</tr>
<tr>
<td>C36</td>
<td>H36</td>
<td>0.951</td>
</tr>
<tr>
<td>C36</td>
<td>C37</td>
<td>1.387(5)</td>
</tr>
<tr>
<td>C37</td>
<td>H37</td>
<td>0.949</td>
</tr>
<tr>
<td>C37</td>
<td>C38</td>
<td>1.385(4)</td>
</tr>
<tr>
<td>C38</td>
<td>H38</td>
<td>0.949</td>
</tr>
<tr>
<td>C38</td>
<td>C39</td>
<td>1.398(4)</td>
</tr>
<tr>
<td>C39</td>
<td>H39</td>
<td>0.95</td>
</tr>
<tr>
<td>C40</td>
<td>C41</td>
<td>1.404(4)</td>
</tr>
<tr>
<td>C40</td>
<td>C45</td>
<td>1.391(4)</td>
</tr>
<tr>
<td>C41</td>
<td>H41</td>
<td>0.95</td>
</tr>
<tr>
<td>C41</td>
<td>C42</td>
<td>1.382(4)</td>
</tr>
<tr>
<td>C42</td>
<td>H42</td>
<td>0.95</td>
</tr>
<tr>
<td>C42</td>
<td>C43</td>
<td>1.397(4)</td>
</tr>
<tr>
<td>C43</td>
<td>H43</td>
<td>0.949</td>
</tr>
<tr>
<td>C43</td>
<td>C44</td>
<td>1.375(4)</td>
</tr>
<tr>
<td>Atom 1</td>
<td>Atom 2</td>
<td>Atom 3</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>C44</td>
<td>H44</td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>C45</td>
<td></td>
</tr>
<tr>
<td>C45</td>
<td>H45</td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>H46A</td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>H46B</td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>Cl1</td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>Cl2</td>
<td></td>
</tr>
<tr>
<td>N4</td>
<td>P1</td>
<td>C22</td>
</tr>
<tr>
<td>N4</td>
<td>P1</td>
<td>C28</td>
</tr>
<tr>
<td>C22</td>
<td>P1</td>
<td>C28</td>
</tr>
<tr>
<td>N4</td>
<td>P2</td>
<td>C34</td>
</tr>
<tr>
<td>N4</td>
<td>P2</td>
<td>C40</td>
</tr>
<tr>
<td>C34</td>
<td>P2</td>
<td>C40</td>
</tr>
<tr>
<td>C1</td>
<td>N1</td>
<td>C5</td>
</tr>
<tr>
<td>C6</td>
<td>N2</td>
<td>C10</td>
</tr>
<tr>
<td>C11</td>
<td>N3</td>
<td>C15</td>
</tr>
<tr>
<td>P1</td>
<td>N4</td>
<td>P2</td>
</tr>
<tr>
<td>P1</td>
<td>N4</td>
<td>C19</td>
</tr>
<tr>
<td>P2</td>
<td>N4</td>
<td>C19</td>
</tr>
<tr>
<td>N1</td>
<td>C1</td>
<td>H1</td>
</tr>
<tr>
<td>N1</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>H2</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>C3</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>H3</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>C4</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>C4</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>H4</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>C5</td>
</tr>
</tbody>
</table>
H4 C4 C5 120.6
N1 C5 C4 122.4(3)
N1 C5 C6 116.4(2)
C4 C5 C6 121.1(2)
N2 C6 C5 116.8(2)
N2 C6 C7 122.9(3)
C5 C6 C7 120.3(2)
C6 C7 H7 120.4
C6 C7 C8 119.3(3)
H7 C7 C8 120.3
C7 C8 C9 117.4(2)
C7 C8 C16 121.7(2)
C9 C8 C16 120.8(2)
C8 C9 H9 120.4
C8 C9 C10 119.3(2)
H9 C9 C10 120.3
N2 C10 C9 123.0(3)
N2 C10 C11 116.6(2)
C9 C10 C11 120.4(2)
N3 C11 C10 116.0(2)
N3 C11 C12 122.9(3)
C10 C11 C12 121.1(2)
C11 C12 H12 120.7
C11 C12 C13 118.8(3)
H12 C12 C13 120.6
C12 C13 H13 120.6
C12 C13 C14 118.8(3)
H13 C13 C14 120.7
C13 C14 H14 120.8
C13 C14 C15 118.3(3)
H14 C14 C15 120.8
N3 C15 C14 123.9(3)
N3 C15 H15 118
C14 C15 H15 118.1
C8 C16 C17 121.7(2)
C8 C16 C21 120.2(2)
C17 C16 C21 118.1(2)
C16 C17 H17 119.8
C16 C17 C18 120.5(2)
H17 C17 C18 119.7
C17 C18 H18 119.6
C17 C18 C19 120.8(2)
H18 C18 C19 119.5
N4 C19 C18 120.3(2)
N4 C19 C20 120.8(2)
C18 C19 C20 118.9(2)
C19 C20 C20 118.9(2)
C19 C20 H20 119.8
C19 C20 C21 120.3(3)
H20 C20 C21 119.9
C16 C21 C20 121.3(3)
C16 C21 H21 119.3
C20 C21 H21 119.4
P1 C22 C23 125.4(2)
P1 C22 C27 115.3(2)
C23 C22 C27 119.2(3)
C22 C23 H23 120.2
C22 C23 C24 119.5(3)
H23 C23 C24 120.2
C23 C24 H24 119.9
C23 C24 C25 120.1(4)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>H24 C24 C25</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>C24 C25 H25</td>
<td></td>
<td>119.7</td>
</tr>
<tr>
<td>C24 C25 C26</td>
<td></td>
<td>120.6(4)</td>
</tr>
<tr>
<td>H25 C25 C26</td>
<td></td>
<td>119.6</td>
</tr>
<tr>
<td>C25 C26 H26</td>
<td></td>
<td>120.4</td>
</tr>
<tr>
<td>C25 C26 C27</td>
<td></td>
<td>119.2(4)</td>
</tr>
<tr>
<td>H26 C26 C27</td>
<td></td>
<td>120.4</td>
</tr>
<tr>
<td>C22 C27 C26</td>
<td></td>
<td>121.2(3)</td>
</tr>
<tr>
<td>C22 C27 H27</td>
<td></td>
<td>119.4</td>
</tr>
<tr>
<td>C26 C27 H27</td>
<td></td>
<td>119.4</td>
</tr>
<tr>
<td>P1 C28 C29</td>
<td></td>
<td>124.0(2)</td>
</tr>
<tr>
<td>P1 C28 C33</td>
<td></td>
<td>117.2(2)</td>
</tr>
<tr>
<td>C29 C28 C33</td>
<td></td>
<td>118.0(3)</td>
</tr>
<tr>
<td>C28 C29 H29</td>
<td></td>
<td>119.6</td>
</tr>
<tr>
<td>C28 C29 C30</td>
<td></td>
<td>120.8(3)</td>
</tr>
<tr>
<td>H29 C29 C30</td>
<td></td>
<td>119.6</td>
</tr>
<tr>
<td>C29 C30 H30</td>
<td></td>
<td>119.9</td>
</tr>
<tr>
<td>C29 C30 C31</td>
<td></td>
<td>120.2(3)</td>
</tr>
<tr>
<td>H30 C30 C31</td>
<td></td>
<td>119.9</td>
</tr>
<tr>
<td>C30 C31 H31</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>C30 C31 C32</td>
<td></td>
<td>119.8(3)</td>
</tr>
<tr>
<td>H31 C31 C32</td>
<td></td>
<td>120.2</td>
</tr>
<tr>
<td>C31 C32 H32</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>C31 C32 C33</td>
<td></td>
<td>120.1(3)</td>
</tr>
<tr>
<td>H32 C32 C33</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>C28 C33 C32</td>
<td></td>
<td>121.1(3)</td>
</tr>
<tr>
<td>C28 C33 H33</td>
<td></td>
<td>119.5</td>
</tr>
<tr>
<td>C32 C33 H33</td>
<td></td>
<td>119.5</td>
</tr>
<tr>
<td>P2 C34 C35</td>
<td></td>
<td>118.9(2)</td>
</tr>
<tr>
<td>P2 C34 C39</td>
<td></td>
<td>122.2(2)</td>
</tr>
</tbody>
</table>
C35 C34 C39 118.3(2)
C34 C35 H35 119.5
C34 C35 C36 121.1(3)
H35 C35 C36 119.4
C35 C36 H36 120
C35 C36 C37 120.0(3)
H36 C36 C37 120
C36 C37 H37 120.2
C36 C37 C38 119.6(3)
H37 C37 C38 119.7
C38 C37 H38 120.
C37 C38 C39 120.6(3)
H38 C37 C39 119.7
C34 C39 C38 120.3(3)
C34 C39 H39 119.8
C38 C39 H39 119.9
P2 C40 C41 125.0(2)
P2 C40 C45 116.5(2)
C41 C40 C45 118.5(2)
C40 C41 C45 118.5(2)
C40 C41 H41 119.8
C40 C41 C42 120.3(3)
H41 C41 C42 119.9
C41 C42 H42 119.7
C41 C42 C43 120.5(3)
H42 C42 C43 119.7
C42 C43 H43 120.2
C42 C43 C44 119.8(3)
H43 C43 C44 120.1
C43 C44 H44 120
C43 C44 C45 119.9(3)
H44 C44 C45 120.1
C40 C45 C44 121.0(3)
C40 C45 H45 119.5
C44 C45 H45 119.5
H46A C46 H46B 107.8
H46A C46 Cl1 109
H46A C46 Cl2 109
H46B C46 Cl1 108.9
H46B C46 Cl2 109
Cl1 C46 Cl2 113.1(3)

<table>
<thead>
<tr>
<th>Ru1</th>
<th>P1</th>
<th>2.291(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru1</td>
<td>P2</td>
<td>2.254(2)</td>
</tr>
<tr>
<td>Ru1</td>
<td>P3</td>
<td>2.359(2)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C1</td>
<td>2.244(6)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C2</td>
<td>2.262(6)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C3</td>
<td>2.247(7)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C4</td>
<td>2.212(6)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C5</td>
<td>2.229(5)</td>
</tr>
<tr>
<td>P1</td>
<td>N1</td>
<td>1.740(5)</td>
</tr>
<tr>
<td>P1</td>
<td>C6</td>
<td>1.831(5)</td>
</tr>
<tr>
<td>P1</td>
<td>C12</td>
<td>1.826(6)</td>
</tr>
<tr>
<td>P2</td>
<td>N1</td>
<td>1.731(5)</td>
</tr>
<tr>
<td>P2</td>
<td>C18</td>
<td>1.811(6)</td>
</tr>
<tr>
<td>P2</td>
<td>C24</td>
<td>1.843(5)</td>
</tr>
<tr>
<td>P3</td>
<td>C51</td>
<td>1.809(6)</td>
</tr>
<tr>
<td>P3</td>
<td>C57</td>
<td>1.831(6)</td>
</tr>
<tr>
<td>P3</td>
<td>C63</td>
<td>1.835(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>N1</td>
<td>C30</td>
<td>1.426(8)</td>
</tr>
<tr>
<td>N2</td>
<td>C41</td>
<td>1.342(7)</td>
</tr>
<tr>
<td>N2</td>
<td>C45</td>
<td>1.344(9)</td>
</tr>
<tr>
<td>N3</td>
<td>C38</td>
<td>1.340(7)</td>
</tr>
<tr>
<td>N3</td>
<td>C39</td>
<td>1.346(8)</td>
</tr>
<tr>
<td>N4</td>
<td>C46</td>
<td>1.355(8)</td>
</tr>
<tr>
<td>N4</td>
<td>C50</td>
<td>1.340(7)</td>
</tr>
<tr>
<td>C1</td>
<td>H1</td>
<td>0.95</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>1.421(8)</td>
</tr>
<tr>
<td>C1</td>
<td>C5</td>
<td>1.416(8)</td>
</tr>
<tr>
<td>C2</td>
<td>H2</td>
<td>0.95</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>1.419(9)</td>
</tr>
<tr>
<td>C3</td>
<td>H3</td>
<td>0.95</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>1.422(8)</td>
</tr>
<tr>
<td>C4</td>
<td>H4</td>
<td>0.951</td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td>1.411(9)</td>
</tr>
<tr>
<td>C5</td>
<td>H5</td>
<td>0.951</td>
</tr>
<tr>
<td>C6</td>
<td>C7</td>
<td>1.368(9)</td>
</tr>
<tr>
<td>C6</td>
<td>C11</td>
<td>1.417(8)</td>
</tr>
<tr>
<td>C7</td>
<td>H7</td>
<td>0.949</td>
</tr>
<tr>
<td>C7</td>
<td>C8</td>
<td>1.394(8)</td>
</tr>
<tr>
<td>C8</td>
<td>H8</td>
<td>0.951</td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>1.389(8)</td>
</tr>
<tr>
<td>C9</td>
<td>H9</td>
<td>0.949</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>1.39(1)</td>
</tr>
<tr>
<td>C10</td>
<td>H10</td>
<td>0.951</td>
</tr>
<tr>
<td>C10</td>
<td>C11</td>
<td>1.373(7)</td>
</tr>
<tr>
<td>C11</td>
<td>H11</td>
<td>0.95</td>
</tr>
<tr>
<td>C12</td>
<td>C13</td>
<td>1.395(8)</td>
</tr>
<tr>
<td>C12</td>
<td>C17</td>
<td>1.401(8)</td>
</tr>
</tbody>
</table>
C13 H13 0.951
C13 C14 1.397(9)
C14 H14 0.949
C14 C15 1.39(1)
C15 H15 0.95
C15 C16 1.38(1)
C16 H16 0.951
C16 C17 1.392(9)
C17 H17 0.95
C18 C19 1.398(8)
C18 C23 1.387(9)
C19 H19 0.95
C19 C20 1.379(9)
C20 H20 0.95
C20 C21 1.37(1)
C21 H21 0.951
C21 C22 1.38(1)
C22 H22 0.95
C22 C23 1.39(1)
C23 H23 0.949
C24 C25 1.401(8)
C24 C29 1.379(9)
C25 H25 0.949
C25 C26 1.410(7)
C26 H26 0.95
C26 C27 1.38(1)
C27 H27 0.948
C27 C28 1.378(9)
C28 H28 0.949
C28 C29 1.408(7)
C29 H29 0.95
C30 C31 1.404(8)
C30 C35 1.398(8)
C31 H31 0.95
C31 C32 1.375(9)
C32 H32 0.95
C32 C33 1.401(8)
C33 C34 1.397(9)
C33 C36 1.471(8)
C34 H34 0.95
C34 C35 1.379(9)
C35 H35 0.95
C36 C37 1.418(8)
C36 C40 1.382(7)
C37 H37 0.949
C37 C38 1.388(8)
C38 C41 1.501(8)
C39 C40 1.396(8)
C39 C46 1.483(7)
C40 H40 0.95
C41 C42 1.385(9)
C42 H42 0.95
C42 C43 1.40(1)
C43 H43 0.951
C43 C44 1.375(9)
C44 H44 0.95
C44 C45 1.383(9)
C45 H45 0.95
C46 C47 1.387(9)
C47 H47 0.951
C47 C48 1.392(8)
C48 H48 0.951
C48 C49 1.39(1)
C49 H49 0.951
C49 C50 1.368(9)
C50 H50 0.95
C51 C52 1.404(9)
C51 C56 1.405(9)
C52 H52 0.95
C52 C53 1.38(1)
C53 H53 0.95
C53 C54 1.393(9)
C54 H54 0.949
C54 C55 1.38(1)
C55 H55 0.949
C55 C56 1.40(1)
C56 H56 0.95
C57 C58 1.412(8)
C57 C62 1.394(8)
C58 H58 0.95
C58 C59 1.383(9)
C59 H59 0.95
C59 C60 1.382(9)
C60 H60 0.95
C60 C61 1.393(8)
C61 H61 0.951
C61 C62 1.379(9)
C62 H62 0.95
C63 C64 1.403(7)
C63 C68 1.392(8)
C64 H64 0.95
C64 C65 1.388(8)
C65 H65 0.949
C65 C66 1.39(1)
C66 H66 0.951
C66 C67 1.393(8)
C67 H67 0.95
C67 C68 1.397(8)
C68 H68 0.95
C69 H69 1
C69 Cl2 1.753(7)
C69 Cl3 1.741(8)
C69 Cl4 1.755(6)
C70 H70 1
C70 Cl5 1.761(9)
C70 Cl6 1.756(9)
C70 Cl7 1.761(7)
C71 H71 1.001
C71 Cl8 1.771(8)
C71 Cl9 1.763(7)
C71 Cl10 1.740(8)
C72 H72 0.998
C72 Cl11 1.773(9)
C72 Cl13 1.759(8)
C72 Cl15 1.731(8)
Cl12 C73 1.760(7)
C73 H73 1
C73 Cl14 1.726(9)
C73 Cl16 1.758(9)
| P1 | Ru1 | P2 | 96.95(3) |
| P1 | Ru1 | P3 | 97.30(5) |
| P1 | Ru1 | C1 | 161.6(2) |
| P1 | Ru1 | C2 | 134.4(2) |
| P1 | Ru1 | C3 | 103.0(2) |
| P1 | Ru1 | C4 | 99.8(2) |
| P1 | Ru1 | C5 | 128.7(2) |
| P2 | Ru1 | P3 | 103.62(5) |
| P2 | Ru1 | C1 | 115.5(2) |
| P2 | Ru1 | C2 | 152.0(2) |
| P2 | Ru1 | C3 | 141.9(2) |
| P2 | Ru1 | C4 | 105.5(2) |
| P2 | Ru1 | C5 | 93.0(2) |
| P3 | Ru1 | C1 | 98.3(2) |
| P3 | Ru1 | C2 | 88.6(1) |
| P3 | Ru1 | C3 | 114.5(2) |
| P3 | Ru1 | C4 | 149.9(2) |
| P3 | Ru1 | C5 | 134.0(2) |
| C1 | Ru1 | C2 | 36.8(2) |
| C1 | Ru1 | C3 | 61.4(2) |
| C1 | Ru1 | C4 | 61.9(2) |
| C1 | Ru1 | C5 | 36.9(2) |
| C2 | Ru1 | C3 | 36.7(2) |
| C2 | Ru1 | C4 | 61.8(2) |
| C2 | Ru1 | C5 | 61.5(2) |
| C3 | Ru1 | C4 | 37.2(2) |
| C3 | Ru1 | C5 | 61.5(2) |
| C4 | Ru1 | C5 | 37.1(2) |
| Ru1 | P1 | N1 | 95.9(2) |
| Ru1 | P1 | C6 | 127.3(2) |
Ru1 P1 C12 115.8(2)
N1 P1 C6 104.9(3)
N1 P1 C12 109.4(3)
C6 P1 C12 102.0(3)
Ru1 P2 N1 97.4(2)
Ru1 P2 C18 123.8(2)
Ru1 P2 C24 114.9(2)
N1 P2 C18 111.6(3)
N1 P2 C24 104.4(2)
C18 P2 C24 103.3(2)
Ru1 P3 C51 126.3(2)
Ru1 P3 C57 111.1(2)
Ru1 P3 C63 112.2(2)
C51 P3 C57 101.1(3)
C51 P3 C63 101.4(3)
C57 P3 C63 101.6(3)
P1 N1 P2 96.9(3)
P1 N1 C30 133.3(4)
P2 N1 C30 128.2(4)
C41 N2 C45 117.3(5)
C38 N3 C39 117.7(5)
C46 N4 C50 117.1(5)
Ru1 C1 H1 122.4
Ru1 C1 C2 72.3(3)
Ru1 C1 C5 71.0(3)
H1 C1 C2 126
H1 C1 C5 126
C2 C1 C5 108.0(5)
Ru1 C2 C1 70.9(3)
Ru1 C2 H2 123.5
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Value (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru1</td>
<td>C2</td>
<td>71.1(3)</td>
</tr>
<tr>
<td>C1</td>
<td>C2</td>
<td>126.2</td>
</tr>
<tr>
<td>C1</td>
<td>C3</td>
<td>107.7(5)</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>126.1</td>
</tr>
<tr>
<td>Ru1</td>
<td>C3</td>
<td>72.2(3)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C3</td>
<td>123.4</td>
</tr>
<tr>
<td>Ru1</td>
<td>C3</td>
<td>70.1(3)</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>126</td>
</tr>
<tr>
<td>C2</td>
<td>C3</td>
<td>108.1(5)</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>125.9</td>
</tr>
<tr>
<td>Ru1</td>
<td>C4</td>
<td>72.8(4)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C4</td>
<td>120.9</td>
</tr>
<tr>
<td>Ru1</td>
<td>C4</td>
<td>72.1(3)</td>
</tr>
<tr>
<td>C3</td>
<td>C4</td>
<td>126.1</td>
</tr>
<tr>
<td>C3</td>
<td>C5</td>
<td>107.9(5)</td>
</tr>
<tr>
<td>H4</td>
<td>C5</td>
<td>126.1</td>
</tr>
<tr>
<td>Ru1</td>
<td>C5</td>
<td>72.1(3)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C5</td>
<td>70.8(3)</td>
</tr>
<tr>
<td>Ru1</td>
<td>C5</td>
<td>122.9</td>
</tr>
<tr>
<td>C1</td>
<td>C5</td>
<td>108.3(5)</td>
</tr>
<tr>
<td>C1</td>
<td>C5</td>
<td>125.8</td>
</tr>
<tr>
<td>C4</td>
<td>C5</td>
<td>125.8</td>
</tr>
<tr>
<td>P1</td>
<td>C6</td>
<td>122.7(5)</td>
</tr>
<tr>
<td>P1</td>
<td>C6</td>
<td>119.1(4)</td>
</tr>
<tr>
<td>C7</td>
<td>C6</td>
<td>118.2(5)</td>
</tr>
<tr>
<td>C6</td>
<td>C7</td>
<td>119.3</td>
</tr>
<tr>
<td>C6</td>
<td>C7</td>
<td>121.3(6)</td>
</tr>
<tr>
<td>H7</td>
<td>C7</td>
<td>119.4</td>
</tr>
<tr>
<td>C7</td>
<td>C8</td>
<td>119.8</td>
</tr>
<tr>
<td>C7</td>
<td>C8</td>
<td>120.2(6)</td>
</tr>
</tbody>
</table>
H8 C8 C9 120
C8 C9 H9 120.5
C8 C9 C10 119.0(6)
H9 C9 C10 120.5
C9 C10 H10 119.6
C9 C10 C11 120.7(6)
H10 C10 C11 119.7
C6 C11 C10 120.5(5)
C6 C11 H11 119.8
C10 C11 H11 119.7
P1 C12 C13 117.4(4)
P1 C12 C17 124.1(4)
C13 C12 C17 118.5(5)
C12 C13 H13 119.7
C12 C13 C14 120.7(5)
H13 C13 C14 119.7
C13 C14 H14 120.1
C13 C14 C15 119.9(6)
H14 C14 C15 120
C14 C15 H15 120.1
C14 C15 C16 119.8(6)
H15 C15 C16 120.1
C15 C16 H16 119.6
C15 C16 C17 120.8(6)
H16 C16 C17 119.6
C12 C17 C16 120.2(5)
C12 C17 H17 120
C16 C17 H17 119.9
P2 C18 C19 114.2(4)
P2 C18 C23 127.0(4)
C19 C18 C23 118.8(5)
C18 C19 H19 119.7
C18 C19 C20 120.5(6)
H19 C19 C20 119.8
C19 C20 H20 119.9
C19 C20 C21 120.2(6)
H20 C20 C21 119.9
C20 C21 H21 119.8
C20 C21 C22 120.5(6)
H21 C21 C22 119.7
C21 C22 H22 120.2
C21 C22 C23 119.6(6)
H22 C22 C23 120.3
C18 C23 C22 120.5(6)
C18 C23 H23 119.7
C22 C23 H23 119.8
P2 C24 C25 122.7(4)
P2 C24 C29 118.1(4)
C25 C24 C29 119.2(5)
C24 C25 C26 119.3(5)
C24 C25 H25 120.4
C25 C26 H26 119.7
C25 C26 C27 120.7(6)
H26 C26 C27 119.6
C26 C27 H27 120
C26 C27 C28 120.0(6)
H27 C27 C28 120
C27 C28 H28 120.2
C27 C28 C29 119.6(6)
C37 C38 C41 121.3(5)
N3 C39 C40 122.6(5)
N3 C39 C46 116.2(5)
C40 C39 C46 121.2(5)
C36 C40 C39 120.2(5)
C36 C40 H40 120
C39 C40 H40 119.8
N2 C41 C38 116.9(5)
N2 C41 C42 123.3(6)
C38 C41 C42 119.7(5)
C41 C42 H42 120.8
C41 C42 C43 118.5(6)
H42 C42 C43 120.7
C42 C43 H43 120.8
C42 C43 C44 118.4(6)
H43 C43 C44 120.8
C43 C44 H44 120.5
C43 C44 C45 119.2(6)
H44 C44 C45 120.2
N2 C45 C44 123.3(6)
N2 C45 H45 118.3
C44 C45 H45 118.4
N4 C46 C39 116.2(5)
N4 C46 C47 122.5(6)
C39 C46 C47 121.3(5)
C46 C47 H47 120.6
C46 C47 C48 118.7(6)
H47 C47 C48 120.6
C47 C48 H48 120.5
C47 C48 C49 118.9(6)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>H58 C58 C59</td>
<td></td>
<td>119.6</td>
</tr>
<tr>
<td>C58 C59 H59</td>
<td></td>
<td>119.4</td>
</tr>
<tr>
<td>C58 C59 C60</td>
<td></td>
<td>121.0(6)</td>
</tr>
<tr>
<td>H59 C59 C60</td>
<td></td>
<td>119.5</td>
</tr>
<tr>
<td>C59 C60 H60</td>
<td></td>
<td>120.6</td>
</tr>
<tr>
<td>C59 C60 C61</td>
<td></td>
<td>118.7(6)</td>
</tr>
<tr>
<td>H60 C60 C61</td>
<td></td>
<td>120.7</td>
</tr>
<tr>
<td>C60 C61 H61</td>
<td></td>
<td>119.7</td>
</tr>
<tr>
<td>C60 C61 C62</td>
<td></td>
<td>120.6(6)</td>
</tr>
<tr>
<td>H61 C61 C62</td>
<td></td>
<td>119.7</td>
</tr>
<tr>
<td>C57 C62 C61</td>
<td></td>
<td>121.5(6)</td>
</tr>
<tr>
<td>C57 C62 H62</td>
<td></td>
<td>119.1</td>
</tr>
<tr>
<td>C61 C62 H62</td>
<td></td>
<td>119.4</td>
</tr>
<tr>
<td>P3 C63 C64</td>
<td></td>
<td>122.5(4)</td>
</tr>
<tr>
<td>P3 C63 C68</td>
<td></td>
<td>118.3(4)</td>
</tr>
<tr>
<td>C64 C63 C68</td>
<td></td>
<td>119.1(5)</td>
</tr>
<tr>
<td>C63 C64 H64</td>
<td></td>
<td>119.7</td>
</tr>
<tr>
<td>C63 C64 C65</td>
<td></td>
<td>120.7(5)</td>
</tr>
<tr>
<td>H64 C64 C65</td>
<td></td>
<td>119.6</td>
</tr>
<tr>
<td>C64 C65 H65</td>
<td></td>
<td>120.1</td>
</tr>
<tr>
<td>C64 C65 C66</td>
<td></td>
<td>119.7(6)</td>
</tr>
<tr>
<td>H65 C65 C66</td>
<td></td>
<td>120.1</td>
</tr>
<tr>
<td>C65 C66 H66</td>
<td></td>
<td>119.9</td>
</tr>
<tr>
<td>C65 C66 C67</td>
<td></td>
<td>120.2(6)</td>
</tr>
<tr>
<td>H66 C66 C67</td>
<td></td>
<td>119.9</td>
</tr>
<tr>
<td>C66 C67 H67</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>C66 C67 C68</td>
<td></td>
<td>120.0(6)</td>
</tr>
<tr>
<td>H67 C67 C68</td>
<td></td>
<td>120.1</td>
</tr>
<tr>
<td>C63 C68 C67</td>
<td></td>
<td>120.2(5)</td>
</tr>
<tr>
<td>C63 C68 H68</td>
<td></td>
<td>119.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C67</td>
<td>C68</td>
<td>H68</td>
</tr>
<tr>
<td>H69</td>
<td>C69</td>
<td>Cl2</td>
</tr>
<tr>
<td>H69</td>
<td>C69</td>
<td>Cl3</td>
</tr>
<tr>
<td>H69</td>
<td>C69</td>
<td>Cl4</td>
</tr>
<tr>
<td>Cl2</td>
<td>C69</td>
<td>Cl3</td>
</tr>
<tr>
<td>Cl2</td>
<td>C69</td>
<td>Cl4</td>
</tr>
<tr>
<td>Cl3</td>
<td>C69</td>
<td>Cl4</td>
</tr>
<tr>
<td>H70</td>
<td>C70</td>
<td>Cl5</td>
</tr>
<tr>
<td>H70</td>
<td>C70</td>
<td>Cl6</td>
</tr>
<tr>
<td>H70</td>
<td>C70</td>
<td>Cl7</td>
</tr>
<tr>
<td>Cl5</td>
<td>C70</td>
<td>Cl6</td>
</tr>
<tr>
<td>Cl5</td>
<td>C70</td>
<td>Cl7</td>
</tr>
<tr>
<td>Cl6</td>
<td>C70</td>
<td>Cl7</td>
</tr>
<tr>
<td>H71</td>
<td>C71</td>
<td>Cl8</td>
</tr>
<tr>
<td>H71</td>
<td>C71</td>
<td>Cl9</td>
</tr>
<tr>
<td>H71</td>
<td>C71</td>
<td>Cl10</td>
</tr>
<tr>
<td>Cl8</td>
<td>C71</td>
<td>Cl9</td>
</tr>
<tr>
<td>Cl8</td>
<td>C71</td>
<td>Cl10</td>
</tr>
<tr>
<td>Cl9</td>
<td>C71</td>
<td>Cl10</td>
</tr>
<tr>
<td>H72</td>
<td>C72</td>
<td>Cl11</td>
</tr>
<tr>
<td>H72</td>
<td>C72</td>
<td>Cl13</td>
</tr>
<tr>
<td>H72</td>
<td>C72</td>
<td>Cl15</td>
</tr>
<tr>
<td>Cl11</td>
<td>C72</td>
<td>Cl13</td>
</tr>
<tr>
<td>Cl11</td>
<td>C72</td>
<td>Cl15</td>
</tr>
<tr>
<td>Cl13</td>
<td>C72</td>
<td>Cl15</td>
</tr>
<tr>
<td>Cl12</td>
<td>C73</td>
<td>H73</td>
</tr>
<tr>
<td>Cl12</td>
<td>C73</td>
<td>Cl14</td>
</tr>
<tr>
<td>Cl12</td>
<td>C73</td>
<td>Cl16</td>
</tr>
<tr>
<td>H73</td>
<td>C73</td>
<td>Cl14</td>
</tr>
<tr>
<td>H73</td>
<td>C73</td>
<td>Cl16</td>
</tr>
</tbody>
</table>
Bond lengths (Å) and bond angles (°) for 3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd1 Cl1</td>
<td>2.3538(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1 Cl1™</td>
<td>2.3538(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1 P1™</td>
<td>2.2070(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd1 P1</td>
<td>2.2070(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 P1™</td>
<td>2.607(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 N3™</td>
<td>1.711(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 C13</td>
<td>1.808(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 C19</td>
<td>1.785(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl3 C25</td>
<td>1.775(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl2 C25</td>
<td>1.772(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl4 C25</td>
<td>1.760(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3 C12</td>
<td>1.439(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 C6</td>
<td>1.345(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 C6™</td>
<td>1.345(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 C5</td>
<td>1.346(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1 C1</td>
<td>1.328(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 C11</td>
<td>1.389(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12 C11™</td>
<td>1.389(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7 C6</td>
<td>1.391(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7 C8</td>
<td>1.388(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10 C91</td>
<td>1.387(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10 C11</td>
<td>1.384(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 C6</td>
<td>1.487(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5 C4</td>
<td>1.394(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1 C2</td>
<td>1.384(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C9 C8 1.499(8)
C13 C18 1.399(6)
C13 C14 1.382(6)
C19 C20 1.392(6)
C19 C24 1.393(6)
C2 C3 1.378(6)
C18 C17 1.385(7)
C3 C4 1.385(6)
C14 C15 1.383(6)
C20 C21 1.379(7)
C24 C23 1.382(7)
C21 C22 1.377(7)
C23 C22 1.368(7)
C16 C17 1.385(8)
C16 C15 1.377(8)

Cl1 Pd1 Cl1 95.34(6)
P11 Pd1 Cl1 96.16(4)
P11 Pd1 Cl1 168.32(4)
P1 Pd1 Cl1 96.16(4)
P1 Pd1 Cl1 168.32(4)
P11 Pd1 P1 72.42(6)
P11 P1 Pd1 53.79(3)
N31 P1 Pd1 94.15(13)
C13 P1 Pd1 116.09(14)
C13 P1 N31 110.97(16)
C19 P1 Pd1 117.03(14)
C19 P1 N31 108.28(16)
\begin{align*}
\text{C19} & \quad \text{P1} & \quad \text{C13} & \quad 109.1(2) \\
\text{P1} & \quad \text{N3} & \quad \text{P1}^1 & \quad 99.3(2) \\
\text{C12} & \quad \text{N3} & \quad \text{P1} & \quad 130.36(12) \\
\text{C12} & \quad \text{N3} & \quad \text{P1}^1 & \quad 130.36(12) \\
\text{C6}^1 & \quad \text{N2} & \quad \text{C6} & \quad 117.0(5) \\
\text{C1} & \quad \text{N1} & \quad \text{C5} & \quad 118.3(4) \\
\text{C11}^1 & \quad \text{C12} & \quad \text{N3} & \quad 120.4(3) \\
\text{C11} & \quad \text{C12} & \quad \text{N3} & \quad 120.4(3) \\
\text{C11} & \quad \text{C12} & \quad \text{C11}^1 & \quad 119.2(5) \\
\text{C8} & \quad \text{C7} & \quad \text{C6} & \quad 119.7(4) \\
\text{C11} & \quad \text{C10} & \quad \text{C9}^1 & \quad 121.6(4) \\
\text{C6} & \quad \text{C5} & \quad \text{N1} & \quad 116.3(4) \\
\text{C4} & \quad \text{C5} & \quad \text{N1} & \quad 121.8(4) \\
\text{C4} & \quad \text{C5} & \quad \text{C6} & \quad 121.9(4) \\
\text{C2} & \quad \text{C1} & \quad \text{N1} & \quad 123.5(5) \\
\text{C7} & \quad \text{C6} & \quad \text{N2} & \quad 123.1(4) \\
\text{C5} & \quad \text{C6} & \quad \text{N2} & \quad 117.3(4) \\
\text{C5} & \quad \text{C6} & \quad \text{C7} & \quad 119.6(4) \\
\text{C10} & \quad \text{C9} & \quad \text{C101} & \quad 117.7(5) \\
\text{C8} & \quad \text{C9} & \quad \text{C101} & \quad 121.2(3) \\
\text{C8} & \quad \text{C9} & \quad \text{C10} & \quad 121.2(3) \\
\text{C18} & \quad \text{C13} & \quad \text{P1} & \quad 116.8(3) \\
\text{C14} & \quad \text{C13} & \quad \text{P1} & \quad 123.8(4) \\
\text{C14} & \quad \text{C13} & \quad \text{C18} & \quad 119.3(4) \\
\text{C10} & \quad \text{C11} & \quad \text{C121} & \quad 119.9(4) \\
\text{C71} & \quad \text{C8} & \quad \text{C7} & \quad 117.4(6) \\
\text{C9} & \quad \text{C8} & \quad \text{C7} & \quad 121.3(3) \\
\text{C9} & \quad \text{C8} & \quad \text{C71} & \quad 121.3(3) \\
\text{C20} & \quad \text{C19} & \quad \text{P1} & \quad 119.4(3)
\end{align*}
C24 C19 P1 121.7(4)
C24 C19 C20 118.6(5)
C3 C2 C1 118.3(5)
C17 C18 C13 119.9(5)
C4 C3 C2 119.1(4)
C3 C4 C5 119.0(4)
C15 C14 C13 120.4(5)
C21 C20 C19 121.0(4)
C23 C24 C19 118.9(5)
C22 C21 C20 120.3(5)
C22 C23 C24 122.7(5)
C15 C16 C17 120.1(5)
C16 C17 C18 120.1(6)
C23 C22 C21 118.5(5)
Cl2 C25 Cl3 110.6(3)
Cl4 C25 Cl3 110.3(3)
Cl4 C25 Cl2 109.6(3)
C16 C15 C14 120.2(5)

Bond lengths (Å) and bond angles (°) for 4

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au1 Au2</td>
<td>2.9667(9)</td>
</tr>
<tr>
<td>Au1 P1</td>
<td>2.234(2)</td>
</tr>
<tr>
<td>Au1 Cl1</td>
<td>2.294(2)</td>
</tr>
<tr>
<td>Au2 Cl2</td>
<td>2.291(2)</td>
</tr>
<tr>
<td>Au2 P2</td>
<td>2.229(2)</td>
</tr>
<tr>
<td>P1 N4</td>
<td>1.714(5)</td>
</tr>
<tr>
<td>P1 C22</td>
<td>1.807(7)</td>
</tr>
<tr>
<td>P1 C28</td>
<td>1.818(7)</td>
</tr>
</tbody>
</table>
P2 N4 1.704(5)
P2 C34 1.816(7)
P2 C40 1.812(7)
N4 C19 1.478(9)
N1 C5 1.34(1)
N1 C1 1.36(1)
C27 H27 0.951
C27 C22 1.397(9)
C27 C26 1.39(1)
N2 C6 1.33(1)
N2 C10 1.34(1)
C12 H12 0.951
C12 C11 1.35(1)
C12 C13 1.38(1)
C34 C39 1.41(1)
C34 C35 1.37(1)
C22 C23 1.403(9)
C19 C18 1.39(1)
C19 C20 1.38(1)
C28 C29 1.40(1)
C28 C33 1.39(1)
C18 H18 0.95
C18 C17 1.39(1)
C40 C41 1.39(1)
C40 C45 1.39(1)
C21 H21 0.951
C21 C16 1.39(1)
C21 C20 1.39(1)
C16 C17 1.40(1)
C16 C8 1.49(1)
C20 H20 0.949
C17 H17 0.95
C31 H31 0.95
C31 C32 1.39(1)
C31 C30 1.38(1)
C6 C7 1.40(1)
C6 C5 1.489(9)
C39 H39 0.951
C39 C38 1.38(1)
C41 H41 0.95
C41 C42 1.40(1)
C4 H4 0.95
C4 C3 1.39(1)
C4 C5 1.40(1)
C25 H25 0.95
C25 C24 1.37(1)
C25 C26 1.387(9)
C23 H23 0.95
C23 C24 1.40(1)
C24 H24 0.95
C8 C7 1.410(9)
C8 C9 1.39(1)
C7 H7 0.951
C26 H26 0.949
C9 H9 0.95
C9 C10 1.39(1)
C3 H3 0.951
C3 C2 1.37(1)
C29 H29 0.95
C29 C30 1.37(1)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl5</td>
<td>Cl1</td>
<td>1.67(1)</td>
</tr>
<tr>
<td>Cl1</td>
<td>H1SA</td>
<td>0.99</td>
</tr>
<tr>
<td>Cl1</td>
<td>H1SB</td>
<td>0.99</td>
</tr>
<tr>
<td>Au2</td>
<td>Au1</td>
<td>85.43(4)</td>
</tr>
<tr>
<td>Au2</td>
<td>Cl1</td>
<td>95.02(4)</td>
</tr>
<tr>
<td>P1</td>
<td>Au1</td>
<td>178.83(6)</td>
</tr>
<tr>
<td>Au1</td>
<td>Cl1</td>
<td>178.83(6)</td>
</tr>
<tr>
<td>Au1</td>
<td>Cl2</td>
<td>178.83(6)</td>
</tr>
<tr>
<td>Cl2</td>
<td>P2</td>
<td>84.86(4)</td>
</tr>
<tr>
<td>Au1</td>
<td>P1</td>
<td>111.5(2)</td>
</tr>
<tr>
<td>Au1</td>
<td>C22</td>
<td>113.1(2)</td>
</tr>
<tr>
<td>Au1</td>
<td>C28</td>
<td>114.7(2)</td>
</tr>
<tr>
<td>N4</td>
<td>P1</td>
<td>106.6(3)</td>
</tr>
<tr>
<td>N4</td>
<td>C28</td>
<td>104.5(3)</td>
</tr>
<tr>
<td>C22</td>
<td>P1</td>
<td>105.8(3)</td>
</tr>
<tr>
<td>Au2</td>
<td>P2</td>
<td>111.2(2)</td>
</tr>
<tr>
<td>Au2</td>
<td>C34</td>
<td>111.6(2)</td>
</tr>
<tr>
<td>Au2</td>
<td>C40</td>
<td>113.6(2)</td>
</tr>
<tr>
<td>N4</td>
<td>P2</td>
<td>105.9(3)</td>
</tr>
<tr>
<td>N4</td>
<td>C34</td>
<td>106.8(3)</td>
</tr>
<tr>
<td>C34</td>
<td>P2</td>
<td>107.2(3)</td>
</tr>
<tr>
<td>P1</td>
<td>N4</td>
<td>122.5(3)</td>
</tr>
<tr>
<td>P1</td>
<td>C19</td>
<td>118.3(4)</td>
</tr>
<tr>
<td>P2</td>
<td>N4</td>
<td>119.2(4)</td>
</tr>
<tr>
<td>C5</td>
<td>N1</td>
<td>116.4(7)</td>
</tr>
<tr>
<td>H27</td>
<td>C27</td>
<td>120.1</td>
</tr>
<tr>
<td>H27</td>
<td>C26</td>
<td>119.9</td>
</tr>
<tr>
<td>C22</td>
<td>C27</td>
<td>120.0(6)</td>
</tr>
<tr>
<td>C6</td>
<td>N2</td>
<td>118.5(7)</td>
</tr>
<tr>
<td>H12</td>
<td>C12</td>
<td>119.7</td>
</tr>
<tr>
<td>Bond</td>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>C18 - C17</td>
<td>H17</td>
<td>119.8</td>
</tr>
<tr>
<td>C16 - C17</td>
<td>H17</td>
<td>119.8</td>
</tr>
<tr>
<td>H31 - C31</td>
<td>C32</td>
<td>119.8</td>
</tr>
<tr>
<td>H31 - C31</td>
<td>C30</td>
<td>119.7</td>
</tr>
<tr>
<td>C32 - C31</td>
<td>C30</td>
<td>120.5(9)</td>
</tr>
<tr>
<td>N2 - C6</td>
<td>C7</td>
<td>123.1(6)</td>
</tr>
<tr>
<td>N2 - C6</td>
<td>C5</td>
<td>117.2(6)</td>
</tr>
<tr>
<td>C7 - C6</td>
<td>C5</td>
<td>119.7(6)</td>
</tr>
<tr>
<td>C34 - C39</td>
<td>H39</td>
<td>120.1</td>
</tr>
<tr>
<td>C34 - C39</td>
<td>C38</td>
<td>119.8(7)</td>
</tr>
<tr>
<td>H39 - C39</td>
<td>C38</td>
<td>120.1</td>
</tr>
<tr>
<td>C40 - C41</td>
<td>H41</td>
<td>119.2</td>
</tr>
<tr>
<td>C40 - C41</td>
<td>C42</td>
<td>121.5(8)</td>
</tr>
<tr>
<td>H41 - C41</td>
<td>C42</td>
<td>119.4</td>
</tr>
<tr>
<td>H4 - C4</td>
<td>C3</td>
<td>121.1</td>
</tr>
<tr>
<td>H4 - C4</td>
<td>C5</td>
<td>121.1</td>
</tr>
<tr>
<td>C3 - C4</td>
<td>C5</td>
<td>117.8(7)</td>
</tr>
<tr>
<td>H25 - C25</td>
<td>C24</td>
<td>119.4</td>
</tr>
<tr>
<td>H25 - C25</td>
<td>C26</td>
<td>119.3</td>
</tr>
<tr>
<td>C24 - C25</td>
<td>C26</td>
<td>121.4(7)</td>
</tr>
<tr>
<td>C22 - C23</td>
<td>H23</td>
<td>120.2</td>
</tr>
<tr>
<td>C22 - C23</td>
<td>C24</td>
<td>119.7(6)</td>
</tr>
<tr>
<td>H23 - C23</td>
<td>C24</td>
<td>120.1</td>
</tr>
<tr>
<td>C25 - C24</td>
<td>C23</td>
<td>119.5(7)</td>
</tr>
<tr>
<td>C25 - C24</td>
<td>H24</td>
<td>120.2</td>
</tr>
<tr>
<td>C23 - C24</td>
<td>H24</td>
<td>120.3</td>
</tr>
<tr>
<td>C16 - C8</td>
<td>C7</td>
<td>120.7(6)</td>
</tr>
<tr>
<td>C16 - C8</td>
<td>C9</td>
<td>122.5(6)</td>
</tr>
<tr>
<td>C7 - C8</td>
<td>C9</td>
<td>116.8(6)</td>
</tr>
<tr>
<td>C6 - C7</td>
<td>C8</td>
<td>118.7(6)</td>
</tr>
<tr>
<td>Atom 1</td>
<td>Atom 2</td>
<td>Atom 3</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>C6</td>
<td>C7</td>
<td>H7</td>
</tr>
<tr>
<td>C8</td>
<td>C7</td>
<td>H7</td>
</tr>
<tr>
<td>C27</td>
<td>C26</td>
<td>C25</td>
</tr>
<tr>
<td>C27</td>
<td>C26</td>
<td>H26</td>
</tr>
<tr>
<td>C25</td>
<td>C26</td>
<td>H26</td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>H9</td>
</tr>
<tr>
<td>C8</td>
<td>C9</td>
<td>C10</td>
</tr>
<tr>
<td>H9</td>
<td>C9</td>
<td>C10</td>
</tr>
<tr>
<td>C4</td>
<td>C3</td>
<td>H3</td>
</tr>
<tr>
<td>C4</td>
<td>C3</td>
<td>C2</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>C2</td>
</tr>
<tr>
<td>C28</td>
<td>C29</td>
<td>H29</td>
</tr>
<tr>
<td>C28</td>
<td>C29</td>
<td>C30</td>
</tr>
<tr>
<td>H29</td>
<td>C29</td>
<td>C30</td>
</tr>
<tr>
<td>N1</td>
<td>C5</td>
<td>C6</td>
</tr>
<tr>
<td>N1</td>
<td>C5</td>
<td>C4</td>
</tr>
<tr>
<td>C6</td>
<td>C5</td>
<td>C4</td>
</tr>
<tr>
<td>N2</td>
<td>C10</td>
<td>C9</td>
</tr>
<tr>
<td>N2</td>
<td>C10</td>
<td>C11</td>
</tr>
<tr>
<td>C9</td>
<td>C10</td>
<td>C11</td>
</tr>
<tr>
<td>C31</td>
<td>C32</td>
<td>H32</td>
</tr>
<tr>
<td>C31</td>
<td>C32</td>
<td>C33</td>
</tr>
<tr>
<td>H32</td>
<td>C32</td>
<td>C33</td>
</tr>
<tr>
<td>C39</td>
<td>C38</td>
<td>H38</td>
</tr>
<tr>
<td>C39</td>
<td>C38</td>
<td>C37</td>
</tr>
<tr>
<td>H38</td>
<td>C38</td>
<td>C37</td>
</tr>
<tr>
<td>H15</td>
<td>C15</td>
<td>N3</td>
</tr>
<tr>
<td>H15</td>
<td>C15</td>
<td>C14</td>
</tr>
<tr>
<td>N3</td>
<td>C15</td>
<td>C14</td>
</tr>
<tr>
<td>C15</td>
<td>N3</td>
<td>C11</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>C15-C14-H14</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>C15-C14-C13</td>
<td>121(1)</td>
<td></td>
</tr>
<tr>
<td>H14-C14-C13</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>C28-C33-C32</td>
<td>120.2(7)</td>
<td></td>
</tr>
<tr>
<td>C28-C33-H33</td>
<td>119.9</td>
<td></td>
</tr>
<tr>
<td>C32-C33-H33</td>
<td>119.8</td>
<td></td>
</tr>
<tr>
<td>C3-C2-H2</td>
<td>120.7</td>
<td></td>
</tr>
<tr>
<td>C3-C2-C1</td>
<td>118.8(7)</td>
<td></td>
</tr>
<tr>
<td>H2-C2-C1</td>
<td>120.6</td>
<td></td>
</tr>
<tr>
<td>N1-C1-C2</td>
<td>123.5(7)</td>
<td></td>
</tr>
<tr>
<td>N1-C1-H1</td>
<td>118.3</td>
<td></td>
</tr>
<tr>
<td>C2-C1-H1</td>
<td>118.2</td>
<td></td>
</tr>
<tr>
<td>C34-C35-H35</td>
<td>118.8</td>
<td></td>
</tr>
<tr>
<td>C34-C35-C36</td>
<td>122.4(7)</td>
<td></td>
</tr>
<tr>
<td>H35-C35-C36</td>
<td>118.8</td>
<td></td>
</tr>
<tr>
<td>C12-C11-C10</td>
<td>122.4(8)</td>
<td></td>
</tr>
<tr>
<td>C12-C11-N3</td>
<td>121.3(9)</td>
<td></td>
</tr>
<tr>
<td>C10-C11-N3</td>
<td>116.3(8)</td>
<td></td>
</tr>
<tr>
<td>C12-C13-C14</td>
<td>118.7(9)</td>
<td></td>
</tr>
<tr>
<td>C12-C13-H13</td>
<td>120.6</td>
<td></td>
</tr>
<tr>
<td>C14-C13-H13</td>
<td>120.7</td>
<td></td>
</tr>
<tr>
<td>C38-C37-H37</td>
<td>119.6</td>
<td></td>
</tr>
<tr>
<td>C38-C37-C36</td>
<td>120.7(8)</td>
<td></td>
</tr>
<tr>
<td>H37-C37-C36</td>
<td>119.7</td>
<td></td>
</tr>
<tr>
<td>C35-C36-C37</td>
<td>118.1(8)</td>
<td></td>
</tr>
<tr>
<td>C35-C36-H36</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>C37-C36-H36</td>
<td>120.9</td>
<td></td>
</tr>
<tr>
<td>C40-C45-H45</td>
<td>121.1</td>
<td></td>
</tr>
<tr>
<td>C40-C45-C44</td>
<td>117.9(8)</td>
<td></td>
</tr>
<tr>
<td>H45-C45-C44</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C41</td>
<td>C42</td>
<td>H42</td>
</tr>
<tr>
<td>C41</td>
<td>C42</td>
<td>C43</td>
</tr>
<tr>
<td>H42</td>
<td>C42</td>
<td>C43</td>
</tr>
<tr>
<td>C31</td>
<td>C30</td>
<td>C29</td>
</tr>
<tr>
<td>C31</td>
<td>C30</td>
<td>H30</td>
</tr>
<tr>
<td>C29</td>
<td>C30</td>
<td>H30</td>
</tr>
<tr>
<td>C42</td>
<td>C43</td>
<td>H43</td>
</tr>
<tr>
<td>C42</td>
<td>C43</td>
<td>C44</td>
</tr>
<tr>
<td>H43</td>
<td>C43</td>
<td>C44</td>
</tr>
<tr>
<td>C45</td>
<td>C44</td>
<td>C43</td>
</tr>
<tr>
<td>C45</td>
<td>C44</td>
<td>H44</td>
</tr>
<tr>
<td>C43</td>
<td>C44</td>
<td>H44</td>
</tr>
<tr>
<td>Cl6</td>
<td>Cl1S</td>
<td>Cl5</td>
</tr>
<tr>
<td>Cl6</td>
<td>Cl1S</td>
<td>H1SA</td>
</tr>
<tr>
<td>Cl6</td>
<td>Cl1S</td>
<td>H1SB</td>
</tr>
<tr>
<td>Cl5</td>
<td>Cl1S</td>
<td>H1SA</td>
</tr>
<tr>
<td>Cl5</td>
<td>Cl1S</td>
<td>H1SB</td>
</tr>
<tr>
<td>H1SA</td>
<td>Cl1S</td>
<td>H1SB</td>
</tr>
</tbody>
</table>