Sb-based Antiferromagnetic Oxychlorides: MSb$_2$O$_3$(OH)Cl (M = Mn, Fe, Co) with 2D Spin-Dimer Structures

Lei Geng,*a Qiang Li,*a,b Hongyan Lu,*a Kai Dai,*a P. Shiv Halasyamani*c

Electronic Supplementary Information

Table S1. Selected important bond lengths (Å) and bond valence sum (BVS) analysis for MSb$_2$O$_3$(OH)Cl (M = Mn, Fe, Co).

<table>
<thead>
<tr>
<th>atoms</th>
<th>bond lengths</th>
<th>bond valence</th>
<th>atoms</th>
<th>bond lengths</th>
<th>bond valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnSb$_2$O$_3$Cl(OH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb(1)-O(3)</td>
<td>1.990(3)</td>
<td>0.956</td>
<td>Sb(1)-O(1)</td>
<td>2.007(3)</td>
<td>0.912</td>
</tr>
<tr>
<td>Sb(1)-O(2)#1</td>
<td>2.048(3)</td>
<td>0.817</td>
<td>Sb(1)-O(4)</td>
<td>2.384(3)</td>
<td>0.329</td>
</tr>
<tr>
<td>Sb(2)-O(2)</td>
<td>1.982(3)</td>
<td>0.974</td>
<td>Sb(2)-O(3)</td>
<td>1.996(3)</td>
<td>0.939</td>
</tr>
<tr>
<td>Sb(2)-O(1)#2</td>
<td>2.177(3)</td>
<td>0.576</td>
<td>Sb(2)-O(4)</td>
<td>2.189(3)</td>
<td>0.558</td>
</tr>
<tr>
<td>Mn(1)-O(2)</td>
<td>2.117(3)</td>
<td>0.413</td>
<td>Mn(1)-O(4)</td>
<td>2.364(4)</td>
<td>0.212</td>
</tr>
<tr>
<td>Mn(1)-O(3)#3</td>
<td>2.121(3)</td>
<td>0.409</td>
<td>Mn(1)-O(1)#4</td>
<td>2.373(3)</td>
<td>0.207</td>
</tr>
<tr>
<td>Mn(1)-O(1)</td>
<td>2.141(3)</td>
<td>0.387</td>
<td>Mn(1)-Cl(1)#5</td>
<td>2.490(2)</td>
<td>0.381</td>
</tr>
<tr>
<td>BVS</td>
<td></td>
<td></td>
<td>BVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sb(1)</td>
<td>3.0</td>
<td>Sb(2)</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn(1)</td>
<td>2.0</td>
<td>O(1)</td>
<td>-2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>-2.2</td>
<td>O(3)</td>
<td>-2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.8</td>
<td>Cl(1)</td>
<td>-0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FeSb$_2$O$_3$Cl(OH)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)-O(3)</td>
<td>1.999(2)</td>
<td>0.931</td>
</tr>
<tr>
<td>Sb(1)-O(1)</td>
<td>2.015(2)</td>
<td>0.891</td>
</tr>
<tr>
<td>Sb(1)-O(1)#2</td>
<td>2.048(2)</td>
<td>0.816</td>
</tr>
<tr>
<td>Sb(2)-O(2)</td>
<td>1.977(2)</td>
<td>0.990</td>
</tr>
<tr>
<td>Sb(2)-O(3)</td>
<td>2.008(2)</td>
<td>0.910</td>
</tr>
<tr>
<td>Sb(2)-O(1)#2</td>
<td>2.172(2)</td>
<td>0.584</td>
</tr>
<tr>
<td>Fe(1)-O(3)#3</td>
<td>2.039(2)</td>
<td>0.438</td>
</tr>
<tr>
<td>Fe(1)-O(4)</td>
<td>2.360(3)</td>
<td>0.184</td>
</tr>
<tr>
<td>Fe(1)-O(1)</td>
<td>2.044(2)</td>
<td>0.432</td>
</tr>
<tr>
<td>Fe(1)-O(1)#4</td>
<td>2.376(2)</td>
<td>0.176</td>
</tr>
<tr>
<td>Fe(1)-O(2)</td>
<td>2.064(2)</td>
<td>0.410</td>
</tr>
</tbody>
</table>

BVS

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)</td>
<td>3.0</td>
<td>Sb(2)</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)</td>
<td>2.0</td>
<td>O(1)</td>
<td>-2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>-2.2</td>
<td>O(3)</td>
<td>-2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)</td>
<td>-1.9</td>
<td>Cl(1)</td>
<td>-0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CoSb$_2$O$_3$Cl(OH)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)-O(6)</td>
<td>1.996(3)</td>
<td>0.941</td>
</tr>
<tr>
<td>Sb(1)-O(1)#2</td>
<td>2.018(3)</td>
<td>0.885</td>
</tr>
<tr>
<td>Sb(1)-O(4)#2</td>
<td>2.059(3)</td>
<td>0.793</td>
</tr>
<tr>
<td>Sb(1)-O(7)</td>
<td>2.341(3)</td>
<td>0.370</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
<td>Angle</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Sb(2)-O(5)</td>
<td>1.984(3)</td>
<td>0.970</td>
</tr>
<tr>
<td>Sb(2)-O(2)#1</td>
<td>2.054(3)</td>
<td>0.804</td>
</tr>
<tr>
<td>Sb(3)-O(3)#3</td>
<td>2.005(3)</td>
<td>0.917</td>
</tr>
<tr>
<td>Sb(3)-O(5)</td>
<td>2.006(3)</td>
<td>0.913</td>
</tr>
<tr>
<td>Sb(4)-O(4)</td>
<td>1.982(3)</td>
<td>0.975</td>
</tr>
<tr>
<td>Sb(4)-O(6)</td>
<td>2.005(3)</td>
<td>0.918</td>
</tr>
<tr>
<td>Co(1)-O(4)</td>
<td>2.010(3)</td>
<td>0.423</td>
</tr>
<tr>
<td>Co(1)-O(5)</td>
<td>2.056(3)</td>
<td>0.374</td>
</tr>
<tr>
<td>Co(1)-O(7)</td>
<td>2.307(3)</td>
<td>0.190</td>
</tr>
<tr>
<td>Co(2)-O(2)</td>
<td>2.007(3)</td>
<td>0.427</td>
</tr>
<tr>
<td>Co(2)-O(3)</td>
<td>2.037(3)</td>
<td>0.393</td>
</tr>
<tr>
<td>Co(2)-O(1)</td>
<td>2.394(3)</td>
<td>0.184</td>
</tr>
</tbody>
</table>

BVS

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb(1)</td>
<td>3.0</td>
</tr>
<tr>
<td>Sb(2)</td>
<td>3.0</td>
</tr>
<tr>
<td>Sb(3)</td>
<td>3.0</td>
</tr>
<tr>
<td>Sb(4)</td>
<td>3.1</td>
</tr>
<tr>
<td>Co(1)</td>
<td>1.9</td>
</tr>
<tr>
<td>Co(2)</td>
<td>1.9</td>
</tr>
<tr>
<td>O(1)</td>
<td>-2.1</td>
</tr>
<tr>
<td>O(2)</td>
<td>-2.2</td>
</tr>
<tr>
<td>O(3)</td>
<td>-2.1</td>
</tr>
<tr>
<td>O(4)</td>
<td>-2.2</td>
</tr>
<tr>
<td>O(5)</td>
<td>-2.3</td>
</tr>
<tr>
<td>O(6)</td>
<td>-2.3</td>
</tr>
<tr>
<td>O(7)</td>
<td>-1.9</td>
</tr>
<tr>
<td>O(8)</td>
<td>-1.9</td>
</tr>
</tbody>
</table>
Cl(1) -0.4 Cl(2) -0.4

Symmetry transformations used to generate equivalent atoms: #1 -x,y-1/2,-z+1/2;
#2 -x,y+1/2,-z+1/2; #3 x,-y+1/2,z-1/2; #4 -x,-y,-z; #5 -x,-y+1,-z; #6 x,-y+1/2,z+1/2;
#7 x-1,y,z.

Table S2. The atomic coordinates and equivalent isotropic displacement parameters
(Å²) for MSb₂O₃Cl(OH) (M = Mn, Fe, Co). U(eq) is defined as one third of the trace of the orthogonalized Uᵢⱼ tensor.

<table>
<thead>
<tr>
<th>atoms</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MnSb₂O₃Cl(OH)</td>
<td>Sb(1)</td>
<td>0.2217(1)</td>
<td>0.0072(1)</td>
<td>0.2777(1)</td>
</tr>
<tr>
<td></td>
<td>Sb(2)</td>
<td>0.2327(1)</td>
<td>0.4184(1)</td>
<td>0.2606(1)</td>
</tr>
<tr>
<td></td>
<td>Mn(1)</td>
<td>0.0032(1)</td>
<td>0.2111(1)</td>
<td>0.0072(1)</td>
</tr>
<tr>
<td></td>
<td>Cl(1)</td>
<td>0.3515(2)</td>
<td>0.7494(2)</td>
<td>0.0508(1)</td>
</tr>
<tr>
<td></td>
<td>O(1)</td>
<td>0.0002(4)</td>
<td>0.0110(3)</td>
<td>0.1374(2)</td>
</tr>
<tr>
<td></td>
<td>O(2)</td>
<td>-0.0001(4)</td>
<td>0.4122(3)</td>
<td>0.1328(2)</td>
</tr>
<tr>
<td></td>
<td>O(3)</td>
<td>0.1579(4)</td>
<td>0.2200(3)</td>
<td>0.3531(3)</td>
</tr>
<tr>
<td></td>
<td>O(4)</td>
<td>0.3039(5)</td>
<td>0.2176(4)</td>
<td>0.1373(3)</td>
</tr>
<tr>
<td>FeSb₂O₃Cl(OH)</td>
<td>Sb(1)</td>
<td>0.2169(1)</td>
<td>0.0033(1)</td>
<td>0.2808(1)</td>
</tr>
<tr>
<td></td>
<td>Sb(2)</td>
<td>0.2410(1)</td>
<td>0.4167(1)</td>
<td>0.2612(1)</td>
</tr>
<tr>
<td></td>
<td>Fe(1)</td>
<td>0.0103(1)</td>
<td>0.2059(1)</td>
<td>0.0105(1)</td>
</tr>
<tr>
<td></td>
<td>Cl(1)</td>
<td>0.3398(1)</td>
<td>0.7557(1)</td>
<td>0.0522(1)</td>
</tr>
<tr>
<td></td>
<td>O(1)</td>
<td>-0.0044(3)</td>
<td>0.0163(3)</td>
<td>0.1387(2)</td>
</tr>
<tr>
<td></td>
<td>O(2)</td>
<td>0.0116(3)</td>
<td>0.4079(3)</td>
<td>0.1310(2)</td>
</tr>
<tr>
<td></td>
<td>O(3)</td>
<td>0.1563(3)</td>
<td>0.2199(3)</td>
<td>0.3581(2)</td>
</tr>
<tr>
<td></td>
<td>O(4)</td>
<td>0.3111(4)</td>
<td>0.2100(3)</td>
<td>0.1404(2)</td>
</tr>
<tr>
<td>CoSb₂O₃Cl(OH)</td>
<td>Sb(1)</td>
<td>0.2211(1)</td>
<td>0.5326(1)</td>
<td>0.2661(1)</td>
</tr>
<tr>
<td></td>
<td>Sb(2)</td>
<td>0.2241(1)</td>
<td>0.0428(1)</td>
<td>0.0148(1)</td>
</tr>
<tr>
<td></td>
<td>Sb(3)</td>
<td>0.2350(1)</td>
<td>0.4585(1)</td>
<td>0.0082(1)</td>
</tr>
</tbody>
</table>
Sb(4) 0.2372(1) 0.1175(1) 0.2562(1) 0.011(1)
Co(1) 0.0086(1) 0.3286(1) 0.1317(1) 0.011(1)
Co(2) 0.0094(1) 0.2471(1) 0.3814(1) 0.011(1)
Cl(1) 0.6652(2) 0.2843(1) 0.3494(1) 0.023(1)
Cl(2) 0.6614(2) 0.2867(2) 0.1001(1) 0.025(1)
O(1) 0.0024(4) 0.0216(3) 0.3057(1) 0.013(1)
O(2) 0.0042(4) 0.4374(3) 0.4438(1) 0.014(1)
O(3) 0.0045(4) 0.0444(3) 0.4399(1) 0.011(1)
O(4) 0.0079(4) 0.1281(3) 0.1894(1) 0.012(1)
O(5) 0.1590(4) 0.2553(3) 0.0552(1) 0.012(1)
O(6) 0.1602(4) 0.3163(3) 0.3056(1) 0.013(1)
O(7) 0.3063(4) 0.3262(4) 0.1944(1) 0.016(1)
O(8) 0.3082(4) 0.2398(4) 0.4445(1) 0.016(1)

(a)
Figure S1. The experimental powder X-ray diffraction and the simulated patterns from single crystal structure for MnSb$_2$O$_3$(OH)Cl (a), FeSb$_2$O$_3$(OH)Cl (b) and CoSb$_2$O$_3$(OH)Cl (c), respectively (X-ray wavelength $\lambda = 1.5406$ Å). Inserts are crystal pictures of the compounds under optical microscope.
Figure S2. M-H magnetic hysteresis loop measured at 5 and 300 K for MnSb$_2$O$_3$(OH)Cl respectively.

Figure S3. M-H magnetic hysteresis loop measured at 5 and 300 K for CoSb$_2$O$_3$(OH)Cl respectively.