Supporting Information

Functional Polyoxometalates from Solvothermal Reactions of VOSO₄ with Tripodal Alkoxides – A Study on the Reactivity of Different "Tris" Derivatives

Olaf Nachtigall,^{*a*} Adelheid Hagenbach,^{*a*} Jelena Wiecko,^{*a*} Dieter Lentz,^{*a*} Ulrich Abram,^{*a*} and Johann Spandl^{**a*}

- a Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34-36, 14195 Berlin, Germany
- * jspandl@chemie.fu-berlin.de

Table of Contents

Crystallographic Data	S1
Valence Sum Calculations	S6
Infrared Spectroscopy	S7
References	S13
	Crystallographic Data Valence Sum Calculations Infrared Spectroscopy References

1. Crystallographic Data

The intensities for the X-ray determinations for I, II, and III were collected on a STOE IPDS 2T instrument. The crystallographic experiments for compounds IV, V, VI, and VII were performed on a Bruker X8 Kappa APEX II diffractometer with a CCD-based detector. Mo K_a radiation ($\lambda = 0.71073$ Å) was used in all experiments but for compound V. The crystal structure of V was determined using Cu radition ($\lambda = 1.54178$ Å). Standard procedures were applied for data reduction and absorption correction. All structures were solved by intrinsic or direct methods and refined by full-matrix least-squares on F² using the SHELXTL and WinGX program packages.^{1,2} Disordered water molecules in the crystal structures of II, IV, V, and VI were treated with PLATON SQUEEZE software.³ A twin matrix for compound II was determined with TwinRotMat.⁴

Compound	I	П	ш	IV	
M / g·mol ⁻¹	954.52 ($\mathbf{I} \cdot \frac{1}{2}$ CH ₃ OH)	1064.30	1196.82 (III · 4 CH ₃ OH · 2 H ₂ O)	1052.62 (IV · CH ₃ OH)	
Crystal colour	blue	blue	blue	green	
Crystal shape	prism	platelet	block	block	
Crystal size / mm ³	$0.60 \times 0.40 \times 0.30$	$0.32 \times 0.18 \times 0.04$	$0.30 \times 0.20 \times 0.20$	$0.40 \times 0.19 \times 0.15$	
Crystal system	triclinic	monoclinic	triclinic	orthorhombic	
Space group	р1	P 2 ₁ / c	р1	Pccn	
a / Å	8.713	22.978	10.670	17.862	
<i>b</i> / Å	10.012	18.463	11.411	23.031	
c / Å	11.959	10.571	11.905	10.466	
α/°	69.32	90	92.03	90	
β/°	82.13	91.74	110.13	90	
γ/°	73.57	90	107.54	90	
V / Å ³	936.57	4482.96	1281.94	4305.34	
Z	1	4	1	4	
<i>T</i> / K	210	210	210	100	
D_{calc} / g·cm ⁻³	1.692	1.743	1.550	1.670	
μ(Mo K _a) / mm ⁻¹	1.166	2.765	0.874	1.030	
T _{min} / T _{max}	0.546 / 0.737	0.546 / 0.737	0.589 / 0.868	0.692 / 0.745	
$\boldsymbol{\theta}_{\max}$ / °	29.21	29.35	29.29	26.372	
Total reflections	4989	11652	6854	4398	
Unique reflections	tions 4236 6007 3476		3476	3350	
Refined Parameters	240	498	323	277	
GooF	1.061	0.925	0.909	1.025	
$R_1 \ [I \ge 2\sigma(I)]$	0.0390	0.0923	0.0605	0.0461	
R ₁ (all data)	0.0467	0.1467	0.1316	0.0754	
$wR_2 [I \ge 2\sigma(I)]$	0.1165	0.2437	0.1190	0.1044	
wR_2 (all data)	0.1202	0.2776	0.1448	0.1143	
$\Delta ho_{\max/\min} / e \cdot Å^{-3}$	+1.348 / -0.964	+1.640 / -1.751	+0.456 / -0.598	+0.876 / -0.465	

Compound	v	VI	VII	
M / g·mol ⁻¹	1320.64	1424.66	890.37 (VII · 4 CH ₃ OH)	
Crystal colour	grey	violet	blue	
Crystal shape	platelet	platelet	hexagon	
Crystal size / mm ³	0.37 imes 0.21 imes 0.04	$0.62 \times 0.29 \times 0.04$	0.13 imes 0.07 imes 0.05	
Crystal system	monoclinic	orthorhombic	monoclinic	
Space group	P 2 ₁ / c	I b a m	P 2 ₁ / n	
a / Å	11.288	22.024	10.917	
<i>b</i> / Å	13.407	43.315	8.536	
c / Å	33.968	13.807	17.170	
α/°	90	90	90	
β/°	92.67	90	97.22	
y/°	90	90	90	
$V/\text{\AA}^3$	5135.24	13171.32	1587.36	
Z	4	4	2	
<i>T</i> / K	100	100	100	
D_{calc} / g·cm ⁻³	1.750	1.518	1.863	
μ(Mo K _a) / mm ⁻¹	μ(Cu K _α) / mm ⁻¹ : 10.818	1.131	1.370	
T_{\min} / T_{\max}	0.493 / 0.754	0.577 / 0.746	0.692 / 0.745	
$\boldsymbol{\theta}_{\max}$ / °	72.27	26.00	27.12	
Total reflections	9760 6741		3483	
Unique reflections	7512	5577	3033	
Refined Parameters	676	398	220	
GooF	1.158	1.139	1.074	
$R_1 [I \ge 2\sigma(I)]$	0.0850	0.0792	0.0377	
R1 (all data)	0.1093	0.1044	0.0457	
$wR_2 [I \ge 2\sigma(I)]$	0.1735	0.1673	0.0931	
wR_2 (all data)	0.1843	0.1767	0.0978	
$\Delta ho_{\max/\min}$ / e·Å ⁻³	+1.047 / -0.737	+2.245 / -1.534	+1.384 / -1.733	

Ellipsoid (50% prob.) plot of I.

Ellipsoid (50% prob.) plot of II.

Ellipsoid (50% prob.) plot of IV.

Ellipsoid (50% prob.) plot of V. (Disordered NMe_4^+ (top) plotted in two positions)

Ellipsoid (50% prob.) plot of VI. (Disordered NMe_4^+ (middle) plotted in two positions for carbon (grey vs. white))

Legend	
Blue:	Vanadium
Red:	Oxygen
Grey:	Carbon
Green:	Nitrogen
Yellow:	Sulphur
Brown:	Bromine

Ellipsoid (50% prob.) plot of **VII**. (Disordered methanol (bottom left) plotted in two positions for oxygen (red vs. pink))

2. Valence Sum Calculations⁵

Valence sums were calculated using $\Sigma_i[d(V-O_i)/1.770]^{-5.2}$ for V(IV) and $\Sigma_i[d(V-O_i)/1.791]^{-5.1}$ for V(V).

Compound I	V1	V2	(V3	3)	(V4)		
V(IV)	3.962	4.017	(3.96	52)	(4	.017)		
V(V)	4.225	4.284	(4.22	25)	(4	.284)		
Compound II	V1	V2	(V3	3)	(V4)		
V(IV)	4,009	4,036	(4,00)9)	(4	,036)		
V(V)	4,366	4,303	(4,36	66)	(4	,303)		
Compound III	V1	V2	(V3	3)	(V4)		
V(IV)	4,088	4,067	(4,08	38)	(4	,067)		
V(V)	4,358	4,336	(4,35	58)	(4	,336)		
Compound IV	V1	V2	(V3	3)	(V4)		
V(IV)	4,058	4,062	(4,05	(4,058) (4,062)				
V(V)	4,326	4,331	(4,32	26)	(4,331)			
Compound V	V1	V2	V3	3		V4	V5	V6
V(IV)	4.141	3.861	3.72	29	4	.079	4.179	3.965
V(V)	4.403	4.108	3.97	71	1 4.336		4.443	4.220
Compound VI	V1	V2	V3	V4		(V5)	(V6)	V7
V(IV)	4.136	4.113	3.835	4.0	016	(4.113)	(3.835)	4.802
V(V)	4.397	4.381	4.015	4.2	273	(4.381)	(4.015)	4.995
Compound VII	V1	V2	(V3	3)	(V4)		
V(IV)	4,053	4,048	(4,05	53)	(4	,048)		
V(V)	4,321	4,316	(4,32	21)	(4	,316)		

3. Infrared Spectroscopy

S11

Selected characteristic vibrational frequencies for compounds I-VII.

The assignment of the vibration modes was tentatively conducted by adjustment of the IRdata of our compounds with the IR-data of ligands and Vanadyl sulfate⁶ and comparison with IR-data from related alkoxo-oxovanadates.⁷⁻⁹

	V4					V ₆	V ₇
	Ι	II	III	IV	VII	V	VI
v(OH, NH)	3450(w, br)				3500(w, br)	3350(w, br)	3450(w, br)
v(N ₃)				2099(s) 2080(s,sh)			
$\delta(NH_2)$					1546(w)	1584 (w)	
v(S-O)*	1110(m)	1120(m, sh) 1106(m)	1122(m)	1121(m) 1106(m)	1120(m) 1098(s)	1119(m)	1110(m)
v(C-O)	1032(m) 1002(s)	1034(m) 1001(m) 990(m, sh)	1026(m) 1002(m)	1029(m) 1005(m)	1031(m) 996(m)	1032(s) 991(s)	1021(vs) 1000(s, sh)
ν(V-O _t)	959(vs) 947(vs)	957(vs) 944(vs)	956(vs) 939(vs)	968(vs) 944(vs)	967(vs) 949(vs)	976(vs) 945(vs)	965(vs) 949(vs)
$\delta(SO_3)^*$						722(s)	708(m)
v(C-Br)		659(s)					
$\frac{\nu(V_2\text{-}OR)}{\delta(SO_2)^*}$	622(m) 604(m)	622(m) 615(m)	609(m)	610(m,sh)	608(m)	600 (vs, br)	600(s, br)
v(V ₃ -OR)*	544(vs)	544(vs)	546(vs)	546(vs)	543(vs)		

br: broad, sh: shoulder

*The stretching and bending modes of the sulfato ligand as well as the stretching modes of the μ_2 and μ_3 bridging oxo or alkoxogroups (v(V₂O) or v(V₃O)) cannot be exactly assigned because of the overlap with the CH₂ bending and other deformation modes of the tris-alkoxo ligands.

4. References

- 1. Bruker AXS Inc., Madison, Wisconsin, USA, 1998.
- 2. G. M. Sheldrick, Acta Cryst., 2008. A64, 112-122.
- 3. A. L. Spek, *ActaCryst.*, 2015, C71, 9-18.
- 4. A. L. Spek, J.Appl.Cryst., 2003, 36, 7-13
- 5. I. D. Brown, K. K. Wu, Acta Cryst., 1976, B32, 1957-1959.
- 6. C. Evans, Inorg. Chem., 1962, 2, 372-375.
- 7. C. C. Debbie, J. C. Feilong, P. Oren, *Inorg. Chem.*, 1997, **36**, 1038-1047.
- 8. H. Hartl, C. Daniel, J. Am. Chem. Soc., 2005, 127, 13978–13987.
- 7. K. Nakamoto, Infrared and Raman spectra of Inorganic and Coordination Compounds, 5th ed; Wiley-Intersience: New York 1997.