Supporting Information

Contents

1. NMR spectra for the ligands L1 – L5

2. 1H NMR spectra for Ni1 – Ni10

3. 1H NMR spectra for $[1,2-(\text{ArN})_2\text{C}_2\text{C}_{10}\text{H}_6]\text{NiBr}_2$ (Ar = 2,6-Me$_2$C$_6$H$_3$, 122,6-Et$_2$C$_6$H$_3$, 22,6-i-Pr$_2$C$_6$H$_3$, 32,4,6-Me$_3$C$_6$H$_2$

4. 19F NMR spectra for Ni1 – Ni10

5. 19F NMR spectra for the species formed on treating Ni2 with 10, 50 and 100 equivalents of EASC

6. Polyethylene microstructures

7. References
1. NMR spectra for the ligands L1 – L5

Figure S1. 1H–1H COSY spectrum of L1 in CDCl₃ at room temperature
Figure S2. 1H NMR spectrum of L1 in CDCl$_3$ at room temperature

Figure S3. 1H NMR spectrum of L2 in CDCl$_3$ at room temperature
Figure S4. 1H NMR spectrum of L3 in CDCl$_3$ at room temperature

Figure S5. 1H NMR spectrum of L4 in CDCl$_3$ at room temperature
Figure S6. 1H NMR spectrum of L5 in CDCl₃ at room temperature

Figure S7. 13C NMR spectrum of L1 in CDCl₃ at room temperature
Figure S8. ^{13}C NMR spectrum of L2 in CDCl$_3$ at room temperature.

Figure S9. ^{13}C NMR spectrum of L3 in CDCl$_3$ at room temperature.
Figure S10. 13C NMR spectrum of L4 in CDCl$_3$ at room temperature

Figure S11. 13C NMR spectrum of L5 in CDCl$_3$ at room temperature
Figure S12. 19F NMR spectrum of L1 in CDCl$_3$ at room temperature

Figure S13. 19F NMR spectrum of L2 in CDCl$_3$ at room temperature
Figure S14. 19F NMR spectrum of L3 in CDCl$_3$ at room temperature

Figure S15. 19F NMR spectrum of L4 in CDCl$_3$ at room temperature
Figure S16. 19F NMR spectrum of L5 in CDCl$_3$ at room temperature
2. 1H NMR spectra for Ni1 – Ni10

Figure S17. 1H NMR spectrum of Ni1 in CD$_2$Cl$_2$ at room temperature

Figure S18. 1H NMR spectrum of Ni2 in CD$_2$Cl$_2$ at room temperature
Figure S19. 1H NMR spectrum of Ni3 in CD$_2$Cl$_2$ at room temperature

Figure S20. 1H NMR spectrum of Ni4 in CD$_2$Cl$_2$ at room temperature
Figure S21. 1H NMR spectrum of Ni5 in CD$_2$Cl$_2$ at room temperature

Figure S22. 1H NMR spectrum of Ni6 in CD$_2$Cl$_2$ at room temperature
Figure S23. 1H NMR spectrum of Ni\textsubscript{7} in CD\textsubscript{2}Cl\textsubscript{2} at room temperature

Figure S24. 1H NMR spectrum of Ni\textsubscript{8} in CD\textsubscript{2}Cl\textsubscript{2} at room temperature
Figure S25. 1H NMR spectrum of Ni\textsubscript{9} in CD\textsubscript{2}Cl\textsubscript{2} at room temperature

Figure S26. 1H NMR spectrum of Ni\textsubscript{10} in CD\textsubscript{2}Cl\textsubscript{2} at room temperature
3. 1H NMR spectra for [1,2-(ArN)$_2$C$_2$C$_{10}$H$_6$]NiBr$_2$ (Ar = 2,6-Me$_2$C$_6$H$_3$, 1 2,6-Et$_2$C$_6$H$_3$, 2 2,6-iPr$_2$C$_6$H$_3$, 1, 3 2,4,6-Me$_3$C$_6$H$_2$, 4)

Figure S27. 1H NMR spectrum of [1,2-(2,6-Me$_2$C$_6$H$_3$N)$_2$C$_2$C$_{10}$H$_6$]NiBr$_2$ (C1) in CD$_2$Cl$_2$ at room temperature

Figure S28. 1H NMR spectrum of [1,2-(2,6-Et$_2$C$_6$H$_3$N)$_2$C$_2$C$_{10}$H$_6$]NiBr$_2$ (C2) in CD$_2$Cl$_2$ at room temperature
Figure S29. 1H NMR spectrum of $[1,2-(2,6-iPr_2C_6H_3N)_2C_2C_{10}H_6]NiBr_2$ (C3) in CD$_2$Cl$_2$ at room temperature (the peak for the Ar-o-CH proton was not visible)

Figure S30. 1H NMR spectrum of $[1,2-(2,4,6-Me_3C_6H_2N)_2C_2C_{10}H_6]NiBr_2$ (C4) in CD$_2$Cl$_2$ at room temperature
4. 19F NMR spectra for Ni1 – Ni10

Figure S31. 19F NMR spectrum of Ni1 in CD$_2$Cl$_2$ at room temperature

Figure S32. 19F NMR spectrum of Ni2 in CD$_2$Cl$_2$ at room temperature
Figure S33. ^{19}F NMR spectrum of Ni3 in CD$_2$Cl$_2$ at room temperature

Figure S34. ^{19}F NMR spectrum of Ni4 in CD$_2$Cl$_2$ at room temperature
Figure S35. 19F NMR spectrum of Ni5 in CD$_2$Cl$_2$ at room temperature

Figure S36. 19F NMR spectrum of Ni6 in CD$_2$Cl$_2$ at room temperature
Figure S37. 19F NMR spectrum of Ni7 in CD$_2$Cl$_2$ at room temperature

Figure S38. 19F NMR spectrum of Ni8 in CD$_2$Cl$_2$ at room temperature
Figure S39. 19F NMR spectrum of Ni9 in CD$_2$Cl$_2$ at room temperature

Figure S40. 19F NMR spectrum of Ni10 in CD$_2$Cl$_2$ at room temperature
5. 19F NMR spectra for the species formed on treating Ni2 with 10, 50 and 100 equivalents of EASC

![Figure S41. 19F NMR spectra of Ni2/EASC with different Al/Ni ratios. At a ratio of Al/Ni2 = 50, two species a and b have been identified](image)

6. Polyethylene microstructures

Table S1. Carbon-13 NMR: Chemical shift, integral and assignments of the polyethylenes obtained using Ni4/EASC (entry 4 in Table 4)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Chem. Shift (ppm)</th>
<th>Integral</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.29</td>
<td>0.21</td>
<td>1B$_2^{-}$I$_1$</td>
</tr>
<tr>
<td>2</td>
<td>14.28</td>
<td>0.44</td>
<td>1B$_4^{-}$I$_2$</td>
</tr>
<tr>
<td>3</td>
<td>20.11</td>
<td>1</td>
<td>1B$_1^{-}$I$_4$</td>
</tr>
<tr>
<td>4</td>
<td>22.91</td>
<td>0.39</td>
<td>2B$_n^{-}$I$_7$</td>
</tr>
<tr>
<td>5</td>
<td>26.79</td>
<td>0.35</td>
<td>2B2^{-}I${10}$</td>
</tr>
<tr>
<td>6</td>
<td>27.25</td>
<td>0.88</td>
<td>βB2^{-}I${11}$; (n-1)Bn^{-}I${11}$</td>
</tr>
<tr>
<td>7</td>
<td>27.44</td>
<td>0.86</td>
<td>βB1^{-}I${12}$</td>
</tr>
</tbody>
</table>
Table S2. Carbon-13 NMR: Chemical shift, integral and assignments of the polyethylene obtained using Ni6/EASC (entry 3 in Table 5)

<table>
<thead>
<tr>
<th>Peak No.</th>
<th>Chem. Shift (ppm)</th>
<th>Integral</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.3</td>
<td>0.06</td>
<td>1B\textsubscript{-} I\textsubscript{1}</td>
</tr>
<tr>
<td>2</td>
<td>14.25</td>
<td>0.3</td>
<td>1B\textsubscript{4} - I\textsubscript{2}</td>
</tr>
<tr>
<td>3</td>
<td>14.73</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20.12</td>
<td>1</td>
<td>1B\textsubscript{1} - I\textsubscript{4}</td>
</tr>
<tr>
<td>5</td>
<td>22.92</td>
<td>0.26</td>
<td>2B\textsubscript{n} - I\textsubscript{7}</td>
</tr>
<tr>
<td>6</td>
<td>26.73</td>
<td>0.15</td>
<td>2B\textsubscript{2} - I\textsubscript{10}</td>
</tr>
<tr>
<td>7</td>
<td>27.28</td>
<td>1.08</td>
<td>βB\textsubscript{1} - I\textsubscript{11}; (n-1)B\textsubscript{n} - I\textsubscript{11}</td>
</tr>
<tr>
<td>8</td>
<td>27.44</td>
<td>1.62</td>
<td>βB\textsubscript{1} - I\textsubscript{12}</td>
</tr>
<tr>
<td>9</td>
<td>29.62</td>
<td>0.64</td>
<td>4B\textsubscript{n} - I\textsubscript{15}</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>10.59</td>
<td>δB\textsubscript{1-a} - I\textsubscript{16}</td>
</tr>
<tr>
<td>11</td>
<td>30.4</td>
<td>2.61</td>
<td>γB\textsubscript{1} - I\textsubscript{17}</td>
</tr>
<tr>
<td>12</td>
<td>32.24</td>
<td>0.29</td>
<td>3B\textsubscript{n} - I\textsubscript{20}</td>
</tr>
<tr>
<td>13</td>
<td>33.24</td>
<td>0.82</td>
<td>brB\textsubscript{1} - I\textsubscript{22}</td>
</tr>
<tr>
<td>14</td>
<td>34.12</td>
<td>0.29</td>
<td>αB\textsubscript{2} - I\textsubscript{24}</td>
</tr>
<tr>
<td>15</td>
<td>34.53</td>
<td>1.11</td>
<td>n-B\textsubscript{n} - I\textsubscript{26}</td>
</tr>
<tr>
<td>16</td>
<td>37.56</td>
<td>1.47</td>
<td>αB\textsubscript{1} - I\textsubscript{29}</td>
</tr>
<tr>
<td>17</td>
<td>38.14</td>
<td>0.35</td>
<td>brB\textsubscript{n} - I\textsubscript{31}</td>
</tr>
</tbody>
</table>

Based on assignments listed in the literature,5 the branching content of the polyethylenes could be calculated using the following equations:

\[N_E = \left(I_{10} + I_{24}/2 + I_{33} \right)/3 \]

\[N_B = \left(I_8 + I_{25} \right)/2 \]

\[N_A = I_{21} \]

\[N_{M(1,4)} = \left(I_{23}/2 + I_{27}/2 \right)/2 \]
\[N_{L(1,4)} = \left(\frac{I_{19}}{2} + \frac{I_{32}}{2} \right) / 2 \]

\[N_L = I_{20} - \left(\frac{I_{123}}{2} + \frac{I_{27}}{2} \right) \]

\[N_M = I_{12} - \left(\frac{I_{123}}{2} + \frac{I_{27}}{2} + \frac{I_{13}}{1} + \frac{I_{21}}{1} + 2I_9 \right) / 2 \]

Total methyl branches = \(N_M + N_{M(1,4)} + N_{M(1,5)} + N_{M(1,6)} \)

Total longer chain branches = \(N_L + N_{L(1,4)} \)

The polyethylene produced using \(\text{Ni}^4/\text{EASC} \) possessed 85 branches per 1000 carbons including methyl (56.6%), ethyl (23.3%) and longer chains (20.1%). By contrast, the polyethylene obtained using \(\text{Ni}^6/\text{EASC} \) contained 116 branches per 1000 carbons, including methyl (52.6%), ethyl (6.4%) and longer chains (41.0%).

7. References