Electronic Supplementary Information (ESI†)

Thermal, Vibrational and Optical Properties of PrLuO₃ Interlanthanides from Hydrothermally-Derived Precursors

Júlia C. Soares,a Kisla P. F. Siqueira,a Paulo C. de Sousa Filho,b Roberto L. Moreiraç and Anderson Diasa

aDepartamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto-MG, 35400-000, Brazil. E-mail: anderson_dias@iceb.ufop.br

bDepartamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, Brazil

cDepartamento de Física, ICEx, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte-MG, 30123-970, Brazil
Fig. S1 (a) XRD pattern and (b) Raman spectrum for the hydrothermally-synthesized Pr(OH)$_3$ and LuO(OH) precursors obtained at 250°C, showing the coexistence of these two starting phases (as indicated).
Fig. S2 DTA/TGA heating runs of the hydrothermally-derived precursors identified by XRD and Raman scattering. The endothermic peaks correspond to the loss of hydroxyl groups toward the formation of lanthanide oxides.
Fig. S3 (a,c) Excitation (λ_{em}=655 nm, corrected for lamp intensity) and (b,d) absorption spectra of the PrLuO$_3$ samples annealed at (a,b) 1400°C (mixed $P6_3/mmc + Pnma$ sample) and (c,d) 1600°C (phase-pure $Pnma$ sample). Insets in (a) and (c) show non-corrected excitation spectra in linear scale; (b) and (d) were mathematically calculated from diffuse reflectance spectra of powders diluted in MgO, taking pure MgO as blank.
Fig. S4 Emission spectrum of the PrLuO₃ sample annealed at 1600°C monitoring the $^3P_0 \rightarrow ^3F_2$ transition under 290°C (black squares), and Gaussian peak fits of Stark components (green lines) and cumulative fit peak (red line).