Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

²⁷Al MQMAS of the δ-Al₁₃-Keggin

C. D. Pilgrim*a, J. R. Callahan*a, C. A. Collab, C. A. Ohlinc, H. E. Masond, W. H. Caseya,b†

^aDepartment of Chemistry and ^bDepartment of Earth and Planetary Sciences; University of California, Davis; Davis, CA

^cDepartment of Chemistry; Umeå University; Umeå, Sweden

^dLawrence Livermore National Laboratory; Livermore, CA

To whom correspondence should be addressed:

Prof. W. H. Casey, E-mail address: whcasey@ucdavis.edu

- 1. Fitting of the ²³Na spectrum
- 2. Compiled list of parameters for the fit of the ²⁷Al spectra

1. Fitting of the ²³Na spectrum

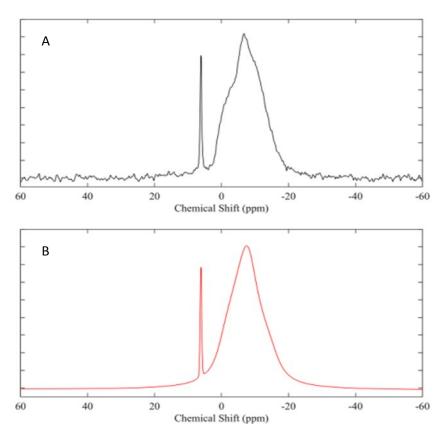


Figure S-1: One-dimensional 23 Na spectrum of the δ -Al $_{13}$ cluster, with A) the experimental data, and B) the fit of the data using Dmfit. The sharp peak at 6.2 ppm is from residual NaCl in the solid while the broad peak centered at -6.7 ppm is due to the Na $^+$ ion capping the δ -Al $_{13}$ ion.

δ _{iso} (ppm	Peak Fitting Model	Amplitud e (a.u.)	EM Paramete r (a.u.)	C _Q (MHz	η	Widt h (ppm	G/L Rati	Integrate d Intensity (%)
6.14	Gaussian/Lorentzi	133.12				0.50	0.82	3.70
	an							
0.07	Q MAS 1/2	751.38	986.76	2.36	1.0			96.30
	-				0			

Table S-1: Parameters for the fitting of the ²³Na spectrum using Dmfit. Two types of models were used, a quadrupolar lineshape model (Q MAS 1/2) to account for the quadrupolar shape of the central transition, and a Gaussian/Lorentzian model to account for the sharp peak seen at 6.14 ppm.

2. Compiled list of parameters for the fit of the ²⁷Al spectra

Peak Number	δ _{iso} (ppm)	Peak Fitting Model	Amplitude (a.u.)	EM Parameter (a.u.)	C _Q (MHz)	η	Width (ppm)	G/L Ratio	Integrated Intensity (%)
1	4.53	Q MAS 1/2	250.62	1407.52	4.55	0.04			21.41
2	6.17	Q MAS 1/2	160.96	528.28	6.24	0.68			26.79
3	5.77	Q MAS 1/2	91.68	255.66	10.57	0.20			44.20
4	67.75	Q MAS 1/2	100.39	410.52	4.06	0.45			7.10
5	60.20	Gaussian/Lorentzian	7.75				1.96	1.0	0.50

Table S-2: Parameters for the fitting of the 27Al spectrum using Dmfit. Two types of models were used, a quadrupolar lineshape model (Q MAS 1/2) to account for the quadrupolar shape of the central transition, and a Gaussian/Lorentzian model to account for the sharp peak seen at 60.20 ppm.