Self-assembly of dinuclear Pd(II)/Pt(II) metallacyclic receptors incorporating *N*-heterocyclic carbene complexes as corners.

Ismael Marcos, a, † Olaya Domarco, a, † Carlos Peinador, a Alberto Fenández, Jesús J. Fernández, Digna Vázquez-Garcíaa, * and Marcos D. Garcíaa, *

SUPPORTING INFORMATION

<u>INDEX</u>

1. NMR spectra	2
1.1. Carbene 6(Pd)· 2NO ₃	2
1.2. Carbene 6(Pt) ·2NO₃	5
1.3. Metallacycle R1·6NO ₃ .	
1.4. Metallacycle R2·6NO ₃	
1.5. Metallacycle R3·8NO ₃	21
1.6. Metallacycle R4·8NO ₃	26
1.7. Metallacycle R5·6NO ₃ .	
1.8. Metallacycle R6·6NO ₃ .	
1.9. Metallacycle R7·8NO ₃	
1.10. Metallacycle R8·8NO ₃ .	
1.11. Inclusion complex R1⊂12· 6NO ₃	57
1.12. Inclusion complex R2⊂12· 6NO ₃	
1.13. Inclusion complex R3 ⊂(12) ₂ 8NO ₃	
1.14. Inclusion complex R5⊂12·6NO₃	70
1.15. Inclusion complex R6⊂12·6NO₃	72
1.16. Inclusion complex R7 ⊂(12) ₂ ·8NO ₃	74
2. Mass espectra	76
2.1. Carbene 6(Pd) ·2NO₃	76
2.2. Carbene 6(Pt) ·2NO ₃ .	78
3. Crystallographic data	
3.1. Metallacycle R3·8PF ₆	
3.2 . Metallacycle R6· 2Br·4NO ₃	
4. Job Plot experiments	
4.1 Inclusion complex R5⊂12·6NO3.	
4.2 Inclusion complex R6⊂(12)₂· 6NO3	
4.3 Inclusion complex R7⊂12·8NO3.	
5. Determination of binding constant (ka) using the UV/Vis dilution method	
5.1. Inclusion complex R5⊂12·6NO3.	
5.2. Inclusion complex R6⊂12·6NO3.	
5.3. Inclusion complex R7⊂12·8NO3.	

1. NMR spectra

1.1. Carbene **6(Pd)**·2NO₃.

¹³C NMR and DEPT (125 MHz, D₂O) full spectra of **6(Pd)**·2NO₃.

HSQC (125 and 500 MHz, D₂O) full spectra of **6(Pd)**·2NO₃.

HMBC (125 and 500 MHz, D₂O) full spectra of **6(Pd)**·2NO₃.

1.2. Carbene **6(Pt)**·2NO₃.

COSY (500 MHz, D₂O) partial spectra of **6(Pt)**·2NO₃.

HSQC (125 and 500 MHz, D₂O) full spectra of **6(Pt)**·2NO₃.

1.3. Metallacycle R1·6NO₃.

¹H NMR (500 MHz, D₂O) spectra of **1** (top), **R1**·6NO₃ (middle) and **6(Pd)**·2NO₃ (bottom).

¹H NMR (500 MHz, D₂O) partial spectra of R1·6NO₃.

HSQC (125 and 500 MHz, D₂O) full spectra of R1·6NO₃.

HMBC (125 and 500 MHz, D₂O) full spectra of R1·6NO₃.

 ^1H NMR (500 MHz, D₂O) partial spectra of **R1**·6NO₃ dilution effect at a) 20 mM, b) 10 mM, c) 5 mM, d) 2.5 mM, e) 1.25 mM, f) 0.75 mM, g) 0.375 mM.

¹H NMR (500 MHz, D_2O) partial spectra of **R1**·6NO₃ 5mM (top) and **R1**·6NO₃ (bottom) in the presence of 1.6 % of CD₃CN in media.

1.4. Metallacycle **R2**·6NO₃

¹H NMR (500 MHz, D₂O) partial spectra of metallacycle derived of the ligand **2** with different metal squares: **5(Pd)**·2NO₃, b) **5(Pt)**·2NO₃, c) **6(Pd)**·2NO₃ and d) **6(Pt)**·2NO₃.

HSQC (125 and 500 MHz, D₂O) partial spectra of R2·6NO₃.

HMBC (125 and 500 MHz, D₂O) partial spectra of R2·6NO₃.

 ^1H NMR (500 MHz, D2O) full spectra of $\textbf{R2} \cdot 6\text{NO}_3$ dilution effect at a) 10mM, b) 5mM, c) 2.5mM, d) 1.25 mM, e) 0.75mM and f) 0.1 mM.

¹H NMR (500 MHz, D₂O) partial spectra of **R2**·6NO₃ (5mM, top) and **R2**·6NO₃ in the presence of 1.6 % (middle) and 3.2% (bottom) of CD₃CN in media, respectively.

1.5. Metallacycle R3·8NO₃

¹H NMR (500 MHz, D₂O) partial spectra of metallacycle derived of the ligand **3** with diferent metal squares: a) **5(Pd)**·2NO₃, b) **5(Pt)**·2NO₃, c) **6(Pd)**·2NO₃ and d) **6(Pt)**·2NO₃.

HMBC (125 and 500 MHz, D₂O) partial spectra of R3·8NO₃.

¹H NMR (500 MHz, D₂O) partial spectra of **R3**·8NO₃ dilution effect at a) 10 mM. b) 5mM, c) 2.5 mM, d) 1.25 mM, e) 0.75 mM, f) 0.375 mM and g) 0.1 mM.

1.6. Metallacycle R4·8NO₃

HSQC (125 and 500 MHz, D_2O) full spectra of R4·8NO₃.

¹H NMR (500 MHz, D₂O) partial espectra, from top to bottom, of **R4**·8NO₃ (5mM) and **R4**·8NO₃ in the presence of 1.6 % and 3.2% of CD₃CN in media, respectively.

1.7. Metallacycle R5·6NO₃.

¹H NMR (500 MHz, D_2O) spectra of **1** (top), **R5**·6NO₃ (middle) and **6(Pt)**·2NO₃ (bottom).

HMBC (1235 and 500 MHz, D_2O) full spectra of R5·6NO₃.

a) 5mM; b) 2.5 mM, c) 1.25 mM and d) 0.1 mM.

¹H NMR (500 MHz, D₂O) partial spectra of a) **R5**·6NO₃ (5mM), **R5**·8NO₃ in the presence of b) 10 %, c) 20%, d) 30%, and e) 50% of CD₃CN in media, and f) ligand **1** (5 mM, D₂O/CD₃CN 1:1).

¹H NMR (300 MHz, D₂O) partial spectra of a) **1**, b) **R5**·6NO₃ (1.25mM), **R5**·8NO₃ in the presence of 2 equiv. of dimethylaminopyridine at c) t=0 h and d) t=48h and e) dimethylaminopyridine.

1.8. Metallacycle **R6**·6NO₃.

¹H NMR (500 MHz, D₂O) partial spectra of **2** (top), **R6**·6NO₃ (middle) and **6(Pt)**·2NO₃ (bottom).

 ^1H NMR (500 MHz, D2O) partial spectra of $\textbf{R6}{\cdot}6\text{NO}_3.$

HMBC (125 and 500 MHz, D₂O) full spectra of R6·6NO₃.

 ^1H NMR (300 MHz, D_2O) partial spectra of $\textbf{R6} \cdot 6\text{NO}_3$ at a) 5mM; b) 2.5 mM, c) 1.25 mM and d) 0.1 mM.

1.9. Metallacycle R7·8NO₃.

 1 H NMR (500 MHz, D₂O) spectra of **3** (top), **R7**·8NO₃ (middle) and **6(Pt)**·2NO₃ (bottom).

 ^1H NMR (300 MHz, D2O) partial espectra of $\textbf{R7} \cdot 8\text{NO}_3$ at a) 5mM; b) 2.5 mM, c) 1.25 mM and d) 0.1 mM.

¹H NMR (300 MHz, D₂O) partial spectra of a) **R7**·8NO₃ (5mM), **R7**·8NO₃ in the presence of b) 10 %, c) 20%, d) 30%, and e) 50% of CD₃CN in media, and f) ligand **3** (5 mM, D₂O/CD₃CN 1:1).

¹H NMR (300 MHz, D₂O) partial spectra of a) **3**, b) **R7**·8NO₃ (1.25mM), **R7**·8NO₃ in the presence of 2 equiv. of dimethylaminopyridine 48h, c) **R7**·8NO₃ in the presence of 4 equiv. of dimethylaminopyridine and d) t=48h and e) dimethylaminopyridine.

1.10. Metallacycle R8·8NO₃.

 1 H NMR (500 MHz, D₂O) spectra of **4** (top), **R8**·8NO₃ (middle) and **6(Pt)**·2NO₃ (bottom).

HSQC (125 and 500 MHz, D₂O) partial spectra of R8·8NO₃

HMBC (125 and 500 MHz, $\mathsf{D}_2\mathsf{O})$ partial spectra of $\textbf{R8}{\cdot}8\mathsf{NO}_3$

 ^1H NMR (300 MHz, D_2O) partial espectra of $\textbf{R8} \cdot 8\text{NO}_3$ at a) 5mM; b) 2.5 mM, c) 1.25 mM and d) 0.1 mM.

¹H NMR (300 MHz, D_2O) partial spectra of a) **R8**·8NO₃ (5mM), **R8**·8NO₃ in the presence of b) 10 %, c) 20%, d) 30%, and e) 50% of CD₃CN in media, and f) ligand **4** (5 mM, D_2O/CD_3CN 1:1).

¹H NMR (300 MHz, D₂O) partial spectra of a) **4**, b) **R8**·8NO₃ (1.25mM), c) **R8**·8NO₃ in the presence of 2 equiv. of dimethylaminopyridine 24h, d) **R7**·8NO₃ in the presence of 4 equiv. of dimethylaminopyridine 24h and e) dimethylaminopyridine

¹H NMR (500 MHz, D₂O) partial spectra of a) ligand **1**, b) **R1**·6NO₃, c) **R1**⊂**12**·6NO₃ and d) **12**. Carbene **6(Pd)**·2NO₃ signals are indicated with blue stars.

¹³C NMR and DEPT (125 MHz, D₂O) partial spectra of **R1⊂12**•6NO₃.

COSY (500 MHz, D₂O) partial spectra of of **R1⊂12**·6NO₃.

HSQC (125 and 500 MHz, D₂O) partial spectra of of **R1⊂12**•6NO₃.

HMBC (125 and 500 MHz, D₂O) full spectra of of **R1⊂12**•6NO₃.

HMBC (125 and 500 MHz, D₂O) partial spectra of of **R1⊂12**•6NO₃.

¹H NMR (500 MHz, D₂O) partial spectra of a) ligand **2**,b) **R2**⋅6NO₃,c) **R2**⊂**12**⋅6NO₃ and d) **12**. Carbene **6(Pd)**⋅2NO₃ signals are indicated with blue stars.

¹H NMR (500 MHz, D₂O) full spectra of $R2 \subset 12.6$ NO₃.

 ^{13}C NMR and DEPT (125 MHz, D_2O) detail spectra of $\textbf{R2}{\subset}\textbf{12}{\cdot}6\text{NO}_3.$

5.0 f2 (ppm)

4.0

3.0

2.0

1.0

0

6.0

Ø

2° a 🖗 🕫 🛛

0 00

7.0

8.0

0 🕫 🙆

9.0

10.0

120

130 140 150

0.0

1.13. Inclusion complex **R3**⊂(**12**)₂8NO₃.

HSQC (125 and 500 MHz, D₂O) partial spectra of $R3 \subset (12)_2 \cdot 8NO_3$.

HMBC (125 and 500 MHz, D_2O) partial spectra of **R3** \subset (**12**)₂·8NO₃.

¹H NMR (300 MHz, D₂O) partial spectra of a) **1**, b) **R5**·6NO₃, c) **R5**⊂**12**·6NO₃ and d) **12**. Carbene **6(Pt)**·2NO₃ signals are indicated with blue stars.

1.15. Inclusion complex **R6⊂12**·6NO₃.

72

1.16. Inclusion complex $R7 \subset (12)_2 \cdot 8NO_3$.

¹H NMR (300 MHz, D₂O) full spectra of **R7**⊂(**12**)₂8NO₃.

2. Mass espectra

2.1. Carbene **6(Pd)**·2NO₃.

HR-MS +ESI (TOF) theorical (red) and observed (blue) for the fragment $C_9H_{12}N_5O_3Pd [M-NO_3]^+$ (exp. m/z= 343.9969, theoretical m/z= 343.9969), error, -0.1 ppm.

HR-MS +ESI (TOF) theorical (red) and observed (blue) for the fragment C₉H₁₃N₄Pd [MH-2NO₃]⁺ (exp. m/z= 283.0170, theoretical m/z= 283.0174), error, -1.7 ppm.

2.2. Carbene **6(Pt)**·2NO₃.

HR-MS +ESI (TOF) theorical (red) and observed (blue) for the fragment $C_9H_{12}N_5O_3Pt [M-NO_3]^+$ (exp. m/z= 433.0554, theoretical m/z= 433.0582), error, 0.3 ppm.

HR-MS +ESI (TOF) theorical (red) and observed (blue) for the fragment $C_9H_{12}N_4P$ [M-2NO₃]⁺² (exp. m/z= 185.5370, theoretical m/z= 185.5360); error 0.1 ppm.

3. Crystallographic data

Colorless and orange prismatic crystals of $\mathbf{R3} \cdot 8PF_6$ and $\mathbf{R6} \cdot 2Br \cdot 4NO_3$ (crystal size 0.148 x 0.138 x 0.090 for $\mathbf{R3} \cdot 8PF_6$ and 0.156 x 0.115 x 0.044 mm³ for $\mathbf{R6} \cdot 2Br \cdot 4NO_3$) were obtained by vapor diffusion of diisopropyl ether into an acetonitrile solution of ($\mathbf{R3} \cdot 8PF_6$) or by recrystallization from a water solution of complex ($\mathbf{R6} \cdot 6NO_3$) containing KBr ($\mathbf{R6} \cdot 2Br \cdot 4NO_3$) and used in X-ray analysis.

Three-dimensional, room temperature X-ray data were collected on a Bruker X8 Apex diffractometer using graphite-monochromated Mo K_{α} radiation. The structures were solved by direct methods and refined by full matrix least squares on F^2 . Hydrogen atoms were included in calculated positions and refined in riding mode.

The fluorine atoms of the two hexafluorophosphate anions found in the asymmetric unit of complex **9** were found to be disordered over two positions and were refined with complementary occupancies.

The four hexafluorophosphate anions found in the asymmetric unit of $R3 \cdot 8PF_6$ showed less than ideal geometries and, consequently, were refined with the necessary restrains. No restrain was applied to the molecular cation. A number of molecules of disordered solvent were present in the crystal, and the best approach to handling this electron density was found to be the SQUEEZE routine of PLATON.^[i] The squeezed void volume was 5866.0 Å³, equivalent to 27.5% of the unit cell. After the use of SQUEEZE the *R* index showed a slight improvement; (0.166 to 0.1396).

Crystals of $R6 \cdot 2Br \cdot 4NO_3$ formed in clumplike aggregates. The diffraction pattern from the sample selected for data collection was indexed on the basis of two orientation matrices. The relationship between these matrices (the 'twin law') could be expressed with the matrix

/-0.63154	-0.43567	0.12420	
0.26655	-0.54100	0.50659	
-1.88342	1.29130	0.55699/	

The data set used for structure elucidation was taken from the more strongly diffracting of the two domains.

The C16, C17, C18 and C19 carbon atoms of one the phenyl rings belonging to the ligand were disordered in two positions and refined in complementary positions, with occupancies of approximately 50%. Restrictions were also applied in order to keep the ring planar.

After the final stages of refinement, a potential void of 323.1 Å³ (15% of unit cell volume) was found in the unit cell. The void probably corresponds to additional nitrate counterions that could not be modelled adequately. The residuals improved slightly after the use of SQEEZE.

Refinement converged at a final *R* of 0.1396 and 0.0939 (for complexes **R3**·8PF₆ and **R6**·2Br·4NO₃, respectively; reflections with *I* > $2\sigma(I)$, *F*) and *wR*₂ = 0.3967 and 0.2707 (for **R3**·8PF₆ and **R6**·2Br·4NO₃, respectively; unique data, *F*²), with allowance for thermal anisotropy of all non-hydrogen atoms (except for the nitrate counterions of **R6**·2Br·4NO₃, that were refined isotropically). The structure solution and refinement were carried out using the program package SHELX-97.^[ii]

CCDC 1518376 and 1518377 contains the supplementary crystallographic data for the complexes. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

¹ A. Spek, *J. Appl. Cryst.*, 2003, **36**, 7-13.

² G. M. Sheldrick, *Acta Crystallogr*. 2008, *A64*, 112.

3.1. Metallacycle **R3**·8PF₆.

Identification code	R3 •8PF ₆
Empirical formula	$C_{66}H_{66}F_{48}N_{19}P_8Pd_2$
Formula weight	2497.93
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Fmmm
Unit cell dimensions	a = 19.316(1) Å
	<i>b</i> = 33.160(3) Å.
	c = 35.500(2) Å.
Volume	22738(3) Å ³
Ζ	8
Density (calculated)	1.459 Mg/m ³
Absorption coefficient	0.550 mm ⁻¹
<i>F</i> (000)	9912
Crystal size	0.148 x 0.138 x 0.090 mm ³
Theta range for data collection	1.147 to 26.036°.
Index ranges	-22<=h<=23, -38<=k<=38, -38<=l<=40
Reflections collected	73947
Independent reflections	5423 [R(int) = 0.1276]
Completeness to theta = 25.242°	95.8 %
Max. and min. transmission	0.7825 and 0.6223
Data / restraints / parameters	5423 / 147 / 358
Goodness-of-fit on F^2	1.385
Final R indices [I>2sigma(I)]	$R_1 = 0.1396, wR_2 = 0.3672$
R indices (all data)	$R_1 = 0.2314, wR_2 = 0.3967$
Largest diff. peak and hole	0.992 and -0.762 e.Å ⁻³
Table 1. Crystal data and structure refinement for R3·8PF6.	

Figure 1. Structural view of **R3**·cation showing 30% thermal ellipsoids. All hydrogen atoms, PF₆⁻ counterions and solvent molecules were omitted for clarity.

Figure 2. Ball and Stick representation of cation **R3**⁸⁺ within the C2/*m* crystal structure of **R3**·8PF₆. Colour code: Pd, yellow; C, dark grey; H, light grey; N, blue.

3.2. Metallacycle **R6**·2Br·4NO₃.

Identification code	$\mathbf{R6} \cdot 2 Br \cdot 4 NO_3$			
Empirical formula	$C_{62}H_{56}Br_2N_{18}O_{12}Pt_2$			
Formula weight	1795.24			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 8.963(2) Å	$\alpha = 92.670(7)^{\circ}.$		
	b = 12.025(1) Å	β=98.160(5)°.		
	c = 21.868(2) Å	$\gamma = 111.839(4)^{\circ}$.		
Volume	2152.9(3) Å ³			
Ζ	1			
Density (calculated)	1.385 Mg/m ³			
Absorption coefficient	4.231 mm ⁻¹			
<i>F</i> (000)	876			
Crystal size	$0.156 \text{ x } 0.115 \text{ x } 0.044 \text{ mm}^3$			
Theta range for data collection	0.946 to 26.688°.			
Index ranges	-11<=h<=11, -15<=k<=15, 27<	<=l<=0		
Reflections collected	8888			
Independent reflections	8888 [R(int) = 0.1366]			
Completeness to theta = 25.242°	99.9 %			
Max. and min. transmission	0.7453 and 0.6027			
Data / restraints / parameters	8888 / 150 / 450			
Goodness-of-fit on F ²	0.995			
Final R indices [I>2sigma(I)]	$R_1 = 0.0939, wR_2 = 0.2516$			
R indices (all data)	$R_1 = 0.1288, wR_2 = 0.2707$			
Largest diff. peak and hole	2.705 and -2.552 e.Å ⁻³			

Table 2. Crystal data and structure refinement for R6·2Br·4NO₃.

Figure 3. Structural view of R6 cation showing 30% thermal ellipsoids. All hydrogen atoms and NO_3^- counterions were omitted for clarity.

Figure 4. Ball and Stick representation of cation **R6**⁶⁺ within the P-1 crystal structure. Colour code: Pt, yellow; C, dark grey; H, light grey; N, blue.

4. Job Plot experiments

4.1 Inclusion complex **R5⊂12**.6NO3.

The stoichiometry of the inclusion complex between **R5** and **12** was determined by the continuous variation (Job's Plot) method. In the figure, the plot shows maximum value at χ =0.5, corroborating the existence of a complex with 1:1 stoichiometry.

Job's Plot diagram (λ =468 nm) showing the 1:1 stoichiometry of R5 \subset (12)₂·6NO₃.

4.2 Inclusion complex **R6⊂(12)**₂·6NO3.

The stoichiometry for the inclusion complex between **R6** and **12** was determined by the Job's Plot method. In the figure, the plot shows maximum value at $\chi = 0.5$, signifying the existence of a complex with 1:1 stoichiometry.

Job's Plot diagram (λ=440 nm) showing the 1:1 stoichiometry of R6⊂12·6NO₃

4.3 Inclusion complex **R7⊂12**·8NO3.

The Job Plot's diagram for the inclusion complex between **R7** and **12** shows a maximum value at $\chi = 0.3$, corroborating the existence of a complex with 1:2 stoichiometry.

Job's Plot diagram (λ =515 nm) showing the 1:2 stoichiometry of R7 \subset (12)₂·8NO₃.

5. Determination of binding constant (ka) using the UV/Vis dilution method

Typically, a 1 mM solution of guest (**12**) in water, and a solution of guest (1mM) and host (**R5**·6NO₃, **R6**·6NO₃ and **R7**·8NO₃, 7.5 mM) in water, were separately prepared. Aliquots of the host/guest solution (10µL initially, then 20, 50, 100, and finally 200 µL) were added to the guest solution (2 mL).Then, the corresponding UV-vis spectra were recorded after each addition. The titration curves were well fitted to 1:1 or 1:2 models by using the Nelder-Mead method implemented on the *bindfit* webapp (www.supramolecular.org) provided by Pall Thordarson *et al.* The absorbances at five different wavelengths centered on the host-guest complex charge-transfer band were plotted against the concentration of the corresponding host and then fitted. For **R5**·6NO₃ and **R6**·6NO₃, the curves were well fitted to a 1:1 binding isotherm and, conversely, to a 2:1 binding isotherm for **R7**·8NO₃.

5.1. Inclusion complex **R5⊂12**.6NO3.

T= 298 K, λ= 458, 463, 468, 473, 478 nm

Ka= 238,27 ± 1.24 M⁻¹

K error= ± 0,52 % M⁻¹

V added	[Host]	Absorbance	Absorbance	Absorbance	Absorbance	Absorbance
(10 ⁻⁶ L)	(10 ⁻³ M)	(458 nm)	(463 nm)	(468 nm)	(473 nm)	(478 nm)
10	0.037	0.137	0.133	0.130	0.126	0.123
20	0.074	0.152	0.149	0.145	0.142	0.138
30	0.111	0.152	0.149	0.146	0.142	0.139
40	0.147	0.166	0.163	0.159	0.156	0.152
50	0.183	0.180	0.177	0.174	0.170	0.166
60	0.218	0.194	0.191	0.187	0.184	0.179
70	0.254	0.207	0.204	0.201	0.197	0.193
80	0.288	0.220	0.216	0.212	0.209	0.204
90	0.323	0.228	0.225	0.221	0.218	0.213
100	0.357	0.243	0.240	0.237	0.233	0.228
110	0.391	0.253	0.251	0.247	0.243	0.238
120	0.425	0.268	0.265	0.261	0.257	0.252
130	0.458	0.279	0.276	0.272	0.268	0.263
140	0.491	0.290	0.287	0.283	0.279	0.274
150	0.523	0.305	0.301	0.297	0.293	0.287
160	0.556	0.314	0.311	0.307	0.303	0.298
170	0.588	0.323	0.319	0.315	0.311	0.305
180	0.619	0.335	0.332	0.329	0.325	0.319
190	0.651	0.347	0.344	0.340	0.335	0.329
200	0.682	0.353	0.350	0.345	0.340	0.335
210	0.713	0.368	0.364	0.360	0.355	0.349
220	0.743	0.386	0.383	0.379	0.374	0.368
230	0.774	0.396	0.393	0.389	0.383	0.377
240	0.804	0.406	0.402	0.397	0.392	0.385
250	0.833	0.416	0.413	0.408	0.403	0.397
260	0.863	0.426	0.423	0.418	0.413	0.406
270	0.892	0.436	0.433	0.428	0.422	0.416
280	0.921	0.448	0.445	0.440	0.434	0.427
290	0.950	0.455	0.453	0.448	0.443	0.437
300	0.978	0.467	0.464	0.460	0.454	0.447
310	1.006	0.476	0.473	0.468	0.463	0.456
320	1.034	0.485	0.483	0.479	0.473	0.466
330	1.062	0.497	0.495	0.492	0.487	0.480
340	1.090	0.501	0.499	0.495	0.490	0.483
350	1.117	0.511	0.508	0.503	0.497	0.490
360	1.144	0.521	0.518	0.513	0.506	0.498
370	1.171	0.531	0.529	0.525	0.519	0.512
380	1.197	0.538	0.536	0.532	0.526	0.519
390	1.224	0.551	0.549	0.545	0.540	0.533
400	1.250	0.552	0.550	0.547	0.542	0.535
420	1.302	0.558	0.556	0.552	0.547	0.539
440	1.352	0.562	0.560	0.556	0.550	0.543
460	1.402	0.589	0.588	0.585	0.580	0.573
480	1.452	0.599	0.598	0.593	0.588	0.580

500	1.500	0.605	0.604	0.600	0.596	0.588
520	1.548	0.631	0.630	0.628	0.622	0.615
540	1.594	0.646	0.645	0.642	0.637	0.630
560	1.641	0.651	0.651	0.648	0.643	0.635
580	1.686	0.661	0.661	0.657	0.651	0.644
600	1.731	0.669	0.670	0.667	0.662	0.657
630	1.797	0.683	0.683	0.681	0.676	0.668
660	1.861	0.697	0.698	0.696	0.691	0.684
690	1.924	0.715	0.716	0.714	0.711	0.705
720	1.985	0.723	0.724	0.721	0.717	0.710
750	2.045	0.748	0.747	0.745	0.741	0.734
780	2.104	0.761	0.762	0.761	0.756	0.750
810	2.162	0.769	0.771	0.770	0.766	0.759
840	2.218	0.784	0.786	0.784	0.781	0.773
870	2.274	0.794	0.796	0.795	0.792	0.785
920	2.363	0.804	0.806	0.805	0.802	0.795
970	2.449	0.808	0.810	0.809	0.806	0.800
1020	2.533	0.827	0.829	0.828	0.824	0.816
1070	2.614	0.840	0.844	0.844	0.841	0.834
1120	2.692	0.849	0.852	0.852	0.849	0.843
1170	2.768	0.862	0.866	0.867	0.864	0.859
1220	2.842	0.878	0.882	0.884	0.883	0.878
1270	2.913	0.888	0.892	0.895	0.893	0.888
1320	2.982	0.895	0.900	0.901	0.899	0.894
1370	3.049	0.911	0.915	0.917	0.915	0.911
1420	3.114	0.918	0.923	0.926	0.924	0.920
1470	3.177	0.931	0.935	0.936	0.934	0.928
1520	3.239	0.932	0.937	0.939	0.938	0.934
1570	3.298	0.945	0.950	0.952	0.950	0.945
1670	3.413	0.960	0.965	0.967	0.966	0.962
1770	3.521	0.957	0.963	0.965	0.965	0.961
1870	3.624	0.976	0.980	0.983	0.981	0.977
1920	3.673	0.982	0.988	0.991	0.991	0.987

Table 3. Data of the titration for the estimation of the Ka of the complex $R5 \subset 12.6 NO_3$

5.2. Inclusion complex **R6⊂12**.6NO3.

T= 298 K, λ= 451, 455, 459, 462 nm Ka= 170.91 ± 1.16 M⁻¹ Ka error= ± 0.68 % M⁻¹

Representation of the titration of the complex $R6 \subset 12.6$ NO₃

\mathbf{V}_{added}	[Host]	Absorbance	Absorbance	Absorbance	Absorbance	
(10⁻⁶ L)	(10 ⁻³ M)	(451 nm)	(455 nm)	(459 nm)	(462 nm)	
20	0.074	0.195	0.191	0.188	0.184	
40	0.147	0.208	0.204	0.200	0.196	
60	0.218	0.218	0.213	0.209	0.205	
80	0.288	0.233	0.228	0.224	0.220	
100	0.357	0.242	0.238	0.233	0.229	
120	0.425	0.255	0.250	0.246	0.242	
140	0.491	0.267	0.262	0.258	0.253	
160	0.556	0.274	0.268	0.263	0.259	
180	0.619	0.281	0.276	0.271	0.266	
200	0.682	0.294	0.288	0.283	0.279	
220	0.743	0.299	0.293	0.289	0.284	
240	0.804	0.315	0.310	0.305	0.300	
260	0.863	0.322	0.316	0.311	0.306	
280	0.921	0.327	0.322	0.316	0.312	
300	0.978	0.339	0.334	0.328	0.322	
320	1.030	0.346	0.340	0.335	0.329	
340	1.090	0.357	0.351	0.345	0.340	
360	1.140	0.360	0.354	0.349	0.344	
380	1.200	0.368	0.362	0.356	0.350	
400	1.250	0.379	0.372	0.365	0.359	
420	1.300	0.384	0.379	0.373	0.368	
440	1.350	0.391	0.385	0.379	0.373	
460	1.400	0.396	0.390	0.384	0.378	
480	1.450	0.406	0.400	0.394	0.388	
500	1.500	0.409	0.403	0.397	0.392	
520	1.550	0.423	0.417	0.411	0.406	
540	1.590	0.425	0.418	0.413	0.407	
560	1.640	0.425	0.419	0.412	0.407	
580	1.690	0.423	0.417	0.411	0.406	
600	1.730	0.440	0.434	0.427	0.422	
620	1.770	0.444	0.438	0.431	0.425	
640	1.820	0.448	0.442	0.436	0.430	
690	1.920	0.456	0.450	0.443	0.437	
740	2.030	0.473	0.466	0.459	0.453	
790	2.120	0.479	0.473	0.466	0.460	
840	2.220	0.484	0.478	0.472	0.466	
940	2.400	0.489	0.482	0.476	0.470	
1040	2.570	0.517	0.510	0.503	0.496	
1140	2.720	0.522	0.515	0.508	0.501	
1240	2.870	0.538	0.531	0.524	0.517	
1340	3.010	0.554	0.548	0.541	0.535	
1440	3.140	0.562	0.556	0.549	0.543	
1640	3.380	0.582	0.575	0.568	0.561	
. Data of the titration for the estimation of the Ka of the complex $R6 \subset 12$ -6NO ₃						

5.3. Inclusion complex **R7⊂12**·8NO3.

T= 298 K, λ= 510, 515, 520, 525 nm

 $\begin{aligned} &\mathsf{Ka}=\mathsf{K}_{11}^*\mathsf{K}_{12}=2.32^*10^6\pm5.1^*10^3; \,\mathsf{K}_{11}=541.21\pm23.76\;\mathsf{M}^{\text{-1}}; \,\mathsf{K}_{21}=4292.56\pm214.63\;\mathsf{M}^{\text{-1}}\\ &\mathsf{K}_{11}\;\mathsf{error}=\pm\;4.39\;\%\;\mathsf{M}^{\text{-1}}; \,\mathsf{K}_{21}\;\mathsf{error}=\pm\;5.00\;\%\;\mathsf{M}^{\text{-1}} \end{aligned}$

Representation of the titration of the complex **R7⊂12**·8NO₃

V_{added}	[Host]	Absorbance	Absorbance	Absorbance	Absorbance
 (10 ⁻⁶ L)	(10 ⁻³ M)	(510 nm)	(515 nm)	(520 nm)	(525 nm)
20	0.074	0.139	0.136	0.134	0.132
40	0.147	0.153	0.150	0.148	0.145
60	0.218	0.162	0.159	0.158	0.156
80	0.288	0.174	0.172	0.171	0.169
100	0.357	0.183	0.181	0.181	0.178
120	0.425	0.190	0.188	0.188	0.185
140	0.491	0.189	0.188	0.187	0.185
160	0.556	0.204	0.202	0.202	0.200
180	0.619	0.213	0.212	0.212	0.209
200	0.682	0.213	0.211	0.212	0.210
220	0.743	0.218	0.217	0.217	0.215
240	0.804	0.225	0.224	0.223	0.221
260	0.863	0.230	0.230	0.229	0.227
280	0.921	0.233	0.232	0.232	0.230
300	0.978	0.240	0.240	0.239	0.237
320	1.034	0.239	0.238	0.237	0.236
340	1.090	0.243	0.243	0.242	0.241
360	1.144	0.255	0.254	0.253	0.252
380	1.197	0.253	0.253	0.252	0.251
400	1.250	0.257	0.256	0.256	0.254
420	1.302	0.260	0.259	0.258	0.256
440	1.352	0.266	0.266	0.266	0.263
460	1.402	0.273	0.272	0.272	0.270
480	1.452	0.276	0.275	0.275	0.273
500	1.500	0.275	0.274	0.274	0.272
520	1.548	0.284	0.283	0.283	0.281
540	1.594	0.289	0.288	0.288	0.286
560	1.641	0.288	0.288	0.288	0.286
580	1.686	0.289	0.289	0.288	0.288
600	1.731	0.287	0.287	0.287	0.285
620	1.775	0.294	0.294	0.294	0.292
640	1.818	0.293	0.293	0.293	0.291
660	1.861	0.299	0.299	0.299	0.297
680	1.903	0.297	0.297	0.297	0.296
700	1.944	0.305	0.304	0.303	0.302
720	1.985	0.308	0.308	0.308	0.306
740	2.026	0.306	0.305	0.305	0.302
760	2.065	0.304	0.304	0.303	0.302
780	2.104	0.305	0.304	0.304	0.302
800	2.143	0.315	0.314	0.314	0.313
820	2.181	0.316	0.316	0.315	0.313
920	2.363	0.312	0.312	0.312	0.311
1120	2.692	0.318	0.317	0.317	0.315
1220	2.842	0.324	0.324	0.323	0.321

1270	2.913	0.331	0.330	0.330	0.328
1370	3.049	0.328	0.328	0.327	0.326
1420	3.114	0.337	0.336	0.335	0.333
1520	3.239	0.334	0.334	0.333	0.331
1570	3.298	0.333	0.333	0.332	0.330
1670	3.413	0.345	0.343	0.342	0.339
1720	3.468	0.342	0.341	0.341	0.339
1820	3.573	0.345	0.344	0.343	0.341
1870	3.624	0.347	0.346	0.346	0.344
1970	3.722	0.352	0.351	0.350	0.350
2020	3.769	0.350	0.350	0.349	0.347
2120	3.859	0.356	0.356	0.356	0.354
2170	3.903	0.352	0.352	0.352	0.350
2270	3.987	0.354	0.353	0.353	0.351
2320	4.028	0.365	0.365	0.365	0.362
2420	4.106	0.376	0.375	0.376	0.374
2470	4.144	0.379	0.378	0.377	0.375

Table 5. Data of the titration for the estimation of the Ka of the complex $R7 \subset 12.8$ NO₃