Supplementary Information

A Ni-based MOF for selective detection and removal of Hg²⁺ in aqueous medium: a facile strategy

Shibashis Halder,^a John Mondal,^b Joaquín Ortega-Castro,^c Antonio Frontera^c and Partha Roy^{a,*}

^a Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, India. E-mail: proy@chemistry.jdvu.ac.in; Tel: +91-33-2457-2970; Fax: +91-33-2414-6414

^b Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India

^c Departament de Química, Universitat de les IllesBalears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain

- Ni

Fig. s1: A perspective view of the topology of complex 1 along 100 plane

Fig. s2: FT-IR spectra of complex **2** (2, black), product from reaction of 3-bpd, SCN⁻ and Hg²⁺ (3, red) and mercuric thiocyanate (4, blue).

Fig. s3: Photographs of complex 1 in solid state (a), complex 1 in water (b), filtrate of solution containing complex 1 after its treatment with Hg^{2+} (c) and solution (c) after addition of dimethylglyoxime under ammoniacal condition (d).

Fig. s4: FT-IR spectra of 1 (black) and 1 in the presence of Ag^+ (red), Pb^{2+} (blue), Cd^{2+} (cyan) and As^{3+} (olive) ion.

Fig. s5: Color of **1** in the presence of (from left) Mg^{2+} , Ca^{2+} , Al^{3+} , Zn^{2+} , Fe^{3+} and Hg^{2+} ions. Na⁺ or K⁺ ion cannot change color of **1**. This fact is evident from the method of synthesis of complex **1**. We used NaSCN or KSCN during synthesis. But complex **1** does not contain any sodium or potassium. Thus, color of **1** is unchanged in the presence of these metal ions.

Fig. s6: FT-IR spectra of 1 (black) and 1 in the presence of Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, Zn²⁺, Fe³⁺ and Hg²⁺ ions

Fig. s7: UV-vis spectra of complex 1 and complex 1 in the presence of Hg^{2+} in solid state.

Fig. s8: EDX spectrum of complex 1

Fig. s9: EDX spectrum of complex 2

Fig. s10: TGA of complex 1. It confirms stability of the framework upto at least 195°C.

Ni1-N8	2.021(3)
Ni1-N1	2.147(3)
Ni1-N5	2.190(3)
Ni2-N7	2.055(3)
Ni2-N6	2.173(3)
Ni2-N2	2.181(3)
N8 ^{vi} –Ni1–N8	180.0
N8vi-Ni1-N1i	90.81(10)
N8-Ni1-N1 ⁱ	89.19(10)
N8 ^{vi} -Ni1-N1	89.19(10)
N8-Ni1-N1	90.81(10)
N1 ⁱ -Ni1-N1	180.0
N8 ^{vi} –Ni1–N5	88.99(10)
N8-Ni1-N5	91.01(10)
N1 ⁱ -Ni1-N5	91.71(10)
N1-Ni1-N5	88.28(10)
N8 ^{vi} -Ni1-N5 ⁱⁱⁱ	91.01(10)
N8-Ni1-N5 ⁱⁱⁱ	88.99(10)
N1 ⁱ -Ni1-N5 ⁱⁱⁱ	88.29(10)
N1-Ni1-N5 ⁱⁱⁱ	91.72(10)
N5-Ni1-N5 ⁱⁱⁱ	180.00(13)
N7 ^v -Ni2-N7	179.999(1)
N7 ^v -Ni2-N6	90.69(10)
N7-Ni2-N6	89.31(10)
N7 ^v -Ni2-N6 ^{iv}	89.31(10)
N7–Ni2–N6 ^{iv}	90.69(10)
N6-Ni2-N6 ^{iv}	180.00(11)

Table s1: Selected bond lengths (in Å) and selected bond angles (in degree) of complex $\mathbf{1}$

N7v-Ni2-N2 ⁱⁱ	91.66(11)
N7-Ni2-N2 ⁱⁱ	88.34(11)
N6-Ni2-N2 ⁱⁱ	96.44(10)
N6 ^{iv} -Ni2-N2 ⁱⁱ	83.56(10)
N7 ^v -Ni2-N2	88.34(11)
N7-Ni2-N2	91.66(11)
N6-Ni2-N2	83.56(10)
N6 ^{iv} -Ni2-N2	96.44(10)
N2 ⁱⁱ –Ni2–N2	179.998(1)
C17-N5-Ni1	118.6(2)
C23-N6-Ni2	121.9(2)
C19-N6-Ni2	120.3(2)
C1-N1-Ni1	123.1(2)
C5-N1-Ni1	120.5(2)
C11-N2-Ni2	117.4(2)
C7-N2-Ni2	124.5(2)
C26-N8-Ni1	169.5(3)
C25-N7-Ni2	175.8(3)

Sl	Compounds	Hg	Type of adsorption	Post	Theoretical	Ref.
No.		uptake		synthetic	Studies	
		Capacity		modification		
		(mg g ⁻¹)				
1	Fe ₃ O ₄ @SiO ₂ @HKUST-1	264	Not mentioned	Yes	No	s1
2	Zn(hip)(L).(DMF)(H ₂ O)	278	Both physisorption	No	No	s2
	$(H_2hip = 5-$		and chemisorption			
	hydroxyisophthalic acid,		with different			
	$L = N^4, N^{4'}$		contributions			
	-di(pyridine-4-					
	yl)biphenyl-					
	4,4 ⁻ -dicarboxamide)					
3	Thiol-functionalized	714.29	Chemisorption	Yes	No	s3
	$[Cu_3(BTC)_2(H_2O)_3]_n$					
	(BTC = benzene-1,3,5-					
	tricarboxylate)					
4	ZnS Nano Crystals	720	Not mentioned	No	No	s4
	Sorbent					
5	Gold	676	Not mentioned	No	No	s5
	Nanoparticle-Aluminum					
	Oxide Adsorbent					
6	Thiol-	416	Not mentioned	Yes	No	s6
	Functionalized Zn-Doped					
	Biomagnetite Particles					
	(MPTMS)					
7	Manganese dioxide	199.53	Physisorption	Yes	No	s7
	nanowhiskers (MDN)					
8	Diatom silica	185.2	Not mentioned	Modified	No	s8
	microparticles modified			with self-		
	with self-assembled			assembled		
	monolayers of 3-			monolayers		
	mercaptopropyl-			of 3-		
	trimethoxysilane			mercaptopro		
	MPTMS-DE			pyl-		

Table s2: Comparison of some of recently published results on Hg uptake studies

				trimethoxysil		
				ane		
				(MPTMS)		
9	Diatom silica	131.7	Not mentioned	Modified	No	s8
	microparticles modified			with self-		
	with self-assembled			assembled		
	monolayers of 3-			monolayers		
	aminopropyl-			of 3-		
	trimethoxysilane APTES-			aminopropyl-		
	DE			trimethoxysil		
				ane (APTES)		
10	Diatom silica	169.5	Not mentioned	Modified	No	s8
	microparticles modified			with self-		
	with self-assembled			assembled		
	monolayers of n-(2-			monolayers		
	aminoethyl)-3-			of n-(2-		
	aminopropyl-			aminoethyl)-		
	trimethoxysilane			3-		
	AEAPTMS-DE			aminopropyl-		
				trimethoxysil		
				ane		
				(AEAPTMS)		
11	Fe ₃ O ₄ Magnetic	97.7	Not mentioned	No	No	s9
	Nanoparticles					
12	$[Ni(3-bpd)_2(NCS)_2]_n$	713	Chemisorption	No	Yes	Prese
						nt
						Work

References

- s1 L. Huang, M. He, B.Chen and B. Hu, J. Mater. Chem. A, 2015, 3, 11587.
- s2 F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu and M. B. Luo, *J. Mater. Chem. A*, 2015, **3**, 9616.
- s3 F. Ke, L. G. Qiu, Y. P. Yuan, F. M. Peng, X. Jiang, A. J. Xie, Y. H. Shen and J. F. Zhu, J. *Hazard. Mater.*, 2011, **196**, 36.
- s4 Z. Qu, L. Yan, L. Li, J. Xu, M. Liu, Z. Li and N. Yan, ACS Appl. Mater. Interfaces, 2014, 6, 18026.
- s5 S. I. Lo, P. C. Chen, C. C. Huang and H. T. Chang, *Environ. Sci. Technol.*, 2012, 46, 2724.
- s6 F. He, W. Wang, J. W. Moon, J. Howe, E. M. Pierce and L. Y. Liang, ACS Appl. Mater. Interfaces, 2012, 4, 4373.
- s7 K. P. Lisha, S. M. Maliyekkal and T. Pradeep, Chem. Eng. J., 2010, 160, 432.
- s8 Y. Yu, J. A. Mensah and D. Losic, Sci. Technol. Adv. Mater., 2012, 13, 1.
- s9 J. F. Liu, Z. S. Zhao and G. B. Jiang, *Environ. Sci. Technol.*, 2008, 42, 6949–6954.