Electronic Supplementary Information

All-inorganic perovskite quantum dot/mesoporous TiO$_2$ composite-based photodetectors with enhanced performance

Lin Zhoua, Kai Yua, Fan Yanga, Jun Zhenga, Yuhua Zuoa, Chuanbo Lia, Buwen Chenga and Qiming Wanga

aState Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Experimental Section

Materials Preparation: All the reagents were purchased from Aladdin or Alfa Aesar and were used directly without further purification unless noted otherwise. As reported by Protesescu et al., Cs_2CO_3 (0.814 g) was loaded into a 250 mL 3-necked flask along with octadecene (ODE, 40 mL) and oleic acid (OA, 2.5 mL), dried for 1 h at 140 °C, and then heated under N_2 to 200 °C until all the Cs_2CO_3 reacted with OA. Because Cs-oleate precipitates out of ODE at room temperature, it was preheated to 100 °C before injection. ODE (5 mL), oleylamine (OAm, 0.5 mL), dried OA (0.5 mL), and PbBr$_2$ (0.069 g) were loaded into a 250 mL 3-necked flask and the temperature was increased to 120 °C under N_2. After complete solubilization of the PbBr$_2$ salt, the temperature was increased to 180 °C and a Cs-oleate solution (0.4 mL, 0.125 M in ODE, prepared as described above and preheated before injection) was quickly injected, and 5 s later, the reaction mixture was cooled using an ice-water bath. After centrifugation at 8000 rpm for 10 min, the supernatant was discarded and the particles were re-dispersed in n-hexane forming stable solutions of colloidal CsPbBr$_3$ QDs.

Device Fabrication: The glass substrates were cleaned successively using acetone, isopropanol, and de-ionized water. The planar interdigitated Ti/Au (50/200 nm) electrodes were fabricated using standard photolithography to pattern the photoresist for subsequent metallization and lift-off. We defined the channel length as 10 μm, while the finger widths and the channel widths were 10 μm and 2 mm, respectively. Then, the mesoporous TiO$_2$ (mp-TiO$_2$) was deposited on top of the substrate by spin-coating TiO$_2$ paste (Dyesol 18NR-T), which was diluted 4 times by absolute ethyl alcohol, at a rate of 2000 rpm for 30s. The layer was then sintered in air at 500 °C for 30 min. The thicknesses of the mp-TiO$_2$ films were controlled to ~200 nm. The above the CsPbBr$_3$ QDs solution (~1 mg/mL) was deposited on the substrate (2000 rpm, 10 s) by spin-coating (3 times) and finally washing with pure 2-propanol (2000 rpm, 10s). This device was named MSM II. For device MSM I, the CsPbBr$_3$ QD solution was drop-cast directly on a glass substrate with pre-patterned gold electrodes and annealed at 200 °C for 30 min in a N_2 atmosphere.
Characterization: The UV-Vis spectra of the nanocrystal solution were collected using a Shimadzu UV3600PLUS UV-Vis-NIR spectrophotometer over an excitation range of 400–600 nm, at 0.5 nm intervals. Photoluminescence (PL) spectra and time-resolved PL decay spectra were measured using the Edinburgh Instruments (EI) FLS980 lifetime and steady state spectrometer. High-resolution transmission electron microscopy (HR-TEM) of the nanocrystals of the CsPbBr$_3$ perovskites was performed using a FEI Tecnai G2 F20 S-TWIN field emission transmission electron microscope. X-ray diffraction (XRD) measurements of the perovskite nanocrystals powder was performed using a BRUKER, AXS D8 ADVANCE X-ray powder diffractometer using monochromatized Cu-Kα radiation ($\lambda = 1.5406$ Å). Film morphologies of the mp-TiO$_2$ films were characterized by field emission scanning electron microscopy (FEI, Nova NanoSEM650). The current-voltage characteristics and time response of the perovskite devices were recorded using a semiconductor device analyzer (Agilent B1500A, USA). A 150 W halogen lamp (MLC-150C, Motic Asia, Hong Kong) was used as the light source for the photovoltaic (I-V) and time response measurements. Photoresponsivity (R) was calculated by measuring the photocurrent I_{ph} and dividing this value by the incident power P_{inc}, such that $R = I_{ph}/P_{inc}$. The spectral photocurrent was measured using a Stanford Research Systems SR830 lock-in amplifier. The monochromatic illumination was provided by a monochromator (Zolix, Omni-λ500) supplied with a tungsten-halogen light source (Zolix, LSH-T150). The light intensities (P_{inc}) of the different wavelengths were measured by a photodiode power sensor (Thorlabs, S130VC). The light excitation was chopped at a frequency of 180 Hz. The device was biased using a Keithley 2611A system source meter. The detector was kept in a dark, shielded environment. And all characterizations were performed in air at room temperature.
Fig. S1 Absorption and photoluminescence (PL) spectra of CsPbX₃ (X = Cl, Br, or I) QDs in solution.

Fig. S2 Analysis of size distribution for the sample shown in Fig. 1(c).
Fig. S3 Time-resolved PL decay and radiative lifetime of CsPbBr₃ QDs in n-hexane solution.

<table>
<thead>
<tr>
<th>Sample</th>
<th>τ₁ (ns)</th>
<th>Ratio₁</th>
<th>τ₂ (ns)</th>
<th>Ratio₂</th>
<th>τ₃ (ns)</th>
<th>Ratio₃</th>
<th>τave</th>
</tr>
</thead>
<tbody>
<tr>
<td>pure QDs film</td>
<td>1.5</td>
<td>38.3%</td>
<td>7.5</td>
<td>39.3%</td>
<td>57.1</td>
<td>22.4%</td>
<td>16.31ns</td>
</tr>
<tr>
<td>QDs on mp-TiO₂</td>
<td>1.0</td>
<td>37.2%</td>
<td>4.0</td>
<td>46.4%</td>
<td>16.5</td>
<td>16.4%</td>
<td>4.93ns</td>
</tr>
<tr>
<td>QDs in n-hexane solution</td>
<td>12.3</td>
<td>21.3%</td>
<td>42.4</td>
<td>56.4%</td>
<td>189.0</td>
<td>22.3%</td>
<td>68.68ns</td>
</tr>
</tbody>
</table>

τave = Ratio₁*τ₁ + Ratio₂*τ₂ + Ratio₃*τ₃

Table S1. Values for TRPL characteristics of pure QDs film after annealing, QDs on mp-TiO₂, and QDs in n-hexane solution.
Fig. S4 HRTEM images of a typical CsPbBr$_3$ QDs QDs (scale bar 5 nm). The insets in the top left corner are the corresponding FFT images.

Fig. S5 On/off ratios of the devices at different bias.
Fig. S6 Morphology of the mp-TiO$_2$ film on Si substrate. a) Top view SEM images. b) SEM cross-sectional images of the mp-TiO$_2$ film.

Fig. S7 Dark and photocurrent I-V curves of our fabricated mp-TiO$_2$-based photodetectors.
Fig. S8 Dark current curves of the device MSM I and the pure mp-TiO$_2$ device.

Fig. S9 Schematic energy-band diagrams of MSM I. a) Au/CsPbBr$_3$ QDs/Au MSM device without external bias. b) The device MSM I with external bias under illumination.