Synthesis and photocatalytic activity of $\text{K}_2\text{CaNaNb}_3\text{O}_{10}$, a new Ruddlesden–Popper phase layered perovskite

Takayoshi Oshima,a,b Toshiyuki Yokoi,c Miharu Eguchi,d and Kazuhiko Maedaa,*

a Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2, Ookayama, Meguro-ku, Tokyo 152-8550 Japan
b Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
c Laboratory of Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-10, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
d Electronic Functional Materials Group, Polymer Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

*To whom corresponding author should be addressed.

TEL: +81-3-5734-2239, FAX: +81-3-5734-2284

Email: maedak@chem.titech.ac.jp
Fig. S1. TG-DTA curves for K$_2$CaNaNb$_3$O$_{10}$ measured under nitrogen flow.

Fig. S2. N$_2$ and H$_2$O adsorption isotherms for K$_2$CaNaNb$_3$O$_{10}$.
Fig. S3. N$_2$ and H$_2$O adsorption isotherms for KCa$_2$Nb$_3$O$_{10}$.

Fig. S4. N$_2$ and H$_2$O adsorption isotherms for H$_2$CaNaNb$_3$O$_{10}$.
Electronic Supplementary Information (ESI)

Fig. S5. N$_2$ and H$_2$O adsorption isotherms for HCa$_2$Nb$_3$O$_{10}$.

Fig. S6. XRD patterns of H$_2$CaNaNb$_{3-x}$Ta$_x$O$_{10}$.