Supplementary Information for

Grain Boundary Dominated Current Hysteresis and Ion Migration in Polycrystalline Perovskite Solar Cells

Yuchuan Shao†, Yanjun Fang†, Tao Li‡, Qi Wang†, Qingfeng Dong, Yehao Deng, Yongbo Yuan†, Haotong Wei, Meiyu Wang, Alexei Gruverman, Jeffery Shield and Jinsong Huang∗

1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.

2Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

*Correspondence should go to J.H. at e-mail: jhuang2@unl.edu
Supplementary Figure 1: (a) Height and (b) deflection images of the perovskite sample before the I-V measurement. (c) Height and (d) deflection images of the same area after the I-V measurement. The blue squares and red triangles indicate where the I-V measurements were performed at grain boundary and grain interior, respectively.
Supplementary Figure 2: (a) Topography AFM image of the perovskite thin film. Five locations where c-AFM tip was placed at to measure dark current are labeled with white triangles. (b)-(f) Dark curves measured at various points with an interval of \(~100\) nm in the direction from the center of a grain to the grain boundary (Δ1-Δ5 points as shown in the Supplementary Figure 2 (a)).

The results show that the dark-current hysteresis only appeared when the c-AFM tip placed with a range about 100 nm (Δ4 point) from the grain boundary for the 500-nm-thick perovskite film. This support our scenario that grain boundaries dominates the ion migration.
Supplementary Figure 3: Local dark-current measured on a grain with applying 43 nN (a), 82 nN (b) and 164 nN (c) loading force on the c-AFM tip, respectively. Local dark-current measured at a grain boundary (GB) with applying 43 nN (d), 82 nN (e) and 164 nN (f) loading force on the c-AFM tip, respectively.
Supplementary Figure 4: (a) Dark-current measured at GB showed a large built-in potential difference (ΔV_B) with reverse and forward scanning, as a result of fast ion migration. (b) Dark-current measured in a grain showed negligible built-in potential difference (ΔV_B) with reverse and forward scanning, as a result of slow ion migration. (c) Statistical results demonstrate that the ΔV_B difference between GBs and grains is well reproducible.
Supplementary Figure 5: Grains with textured structure in CH$_3$NH$_3$PbI$_3$ thin film.
Supplementary Figure 6: (a) A SEM image shows grains with different topography. (b) Diffraction pattern of a smooth grain. (c) Diffraction pattern of a textured grain.
Supplementary Figure 7: No dark current hysteresis was observed in the CH$_3$NH$_3$PbBr$_3$ single-crystal device regardless of the scanning rate: (a) 0.5 V s$^{-1}$, (b) 2 V s$^{-1}$, (c) 10 V s$^{-1}$.