Electronic Supplementary Information

A Low-Dissipation, Pumpless, Gravity Induced Flow Battery

Xinwei Chena,\#, Brandon J. Hopkinsb,\#, Ahmed Helalb, Frank Y. Fana, Kyle C. Smitha, Zheng Lia, Alexander H. Slocumb, Gareth H. McKinleyb, W. Craig Cartera, Yet-Ming Chianga,*

(a) Department of Materials Science and Engineering and (b) Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

*Corresponding author’s e-mail: ychiang@mit.edu
Yield Stress Fluid Modeling

Yield stress fluids can be modeled using simple generalized Newtonian fluids models\(^1\). Typical models include the Bingham plastic model where the stress is the sum of a yield stress and a linear plastic response and the Herschel-Bulkley model where the stress is the sum of a yield stress and a power law plastic response that can account for shear-thinning in the suspension.

The equation for the Bingham model is given by:

\begin{align}
\tau < \tau_B, \dot{\gamma} &= 0 \\
\tau \geq \tau_B, \tau &= \tau_B + \mu_p \dot{\gamma}
\end{align}

(S1)

(S2)

The equation for the Herschel-Bulkley model is given by:

\begin{align}
\tau < \tau_y, \dot{\gamma} &= 0 \\
\tau \geq \tau_y, \tau &= \tau_y + K \gamma^n
\end{align}

(S3)

(S4)

For flow modeling, using the Bingham model makes for more tractable equations but if the material is shear-thinning, the Bingham model fit will tend to overestimate the yield stress. A compromise between simpler flow equations and good accuracy for fits can be made if we use a piecewise Bingham model over the range of shear rates of interest where we define a transition stress \(\tau_t\) above which we allow the yield stress and plastic viscosity to change while keeping the function piecewise continuous.

The equation for the piecewise Bingham model is given by

\begin{align}
\tau < \tau_B, \dot{\gamma} &= 0 \\
\tau \geq \tau_t, \tau &= \tau_t + \mu_p \dot{\gamma} \gamma^n
\end{align}

(S5)
\[\tau \geq \tau_B, \tau = \tau_B + \mu_p \dot{\gamma} \] \hspace{1cm} (S6)

\[\tau \geq \tau_T, \tau = \tau_T' + \mu_p' \dot{\gamma} \] \hspace{1cm} (S7)

For a shear-thinning material, the piecewise Bingham model will provide a more accurate fit than the Bingham model while keeping linear plastic terms for simpler flow equations. A kink at the transition stress is a consequence of this model as seen in Figure S3a.

Multiple Gap Slip Correction for Parallel Plate Geometry

If the rheometric steady shear flow curves show gap-dependence then the flow curves are not material properties and this gap-dependence is a signature of wall slip in the system. This can be corrected for using the following procedure from Yoshimura & Prud’homme\(^2\): for a given shear stress \(\tau\), the apparent shear rate \(\dot{\gamma}_a(\tau)\) can be kinematically decomposed by the following relation:

\[\dot{\gamma}_a(\tau) = \dot{\gamma}(\tau) + \frac{2V_s(\tau)}{H} \] \hspace{1cm} (S8)

where \(\dot{\gamma}(\tau)\) is the true shear rate experienced by the sample and \(V_s(\tau)\) is the slip velocity at each wall at the given stress. For each given stress, the apparent shear rate is plotted against \(1/H\) and a linear fit is applied to the curves. The intercept & the slope are used to extract the true shear rate and the slip velocity for the given stress respectively.

Scaling of Mechanical Loss with GIFcell Size
Here we analyze the mechanical energy consumed in operating the GIFcell as a function of its size. The mechanical energy per unit mass to tilt the cell by an angle 2θ is given by:

$$e_{\text{mechanical}} = gL_{\text{travel}} \sin \theta$$ \hfill (S9)

where L_{travel} is the length of the electrolyte chamber or “tank” as illustrated in Fig. 2c and g is the gravitational force constant. As a starting point, consider that the mechanical energy for 25 flips of the prototype GIFcell is 0.032 J/g, which is in the order of $\sim10^{-4}$ of the electrochemical energy extracted for this system. The following table shows how the ratio of mechanical energy to electrochemical energy scales with tank length L_{tank}, assuming 25 tilt operations are needed to fully charge or discharge the cell.

Table S1: The effect of tank length L_{tank} on the ratio of mechanical energy to electrochemical energy, assuming 25 tilt operations are needed to fully charge or discharge the cell.

<table>
<thead>
<tr>
<th>L_{tank} (meters)</th>
<th>0.07 (lab scale)</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical to electrochemical energy ratio</td>
<td>0.023%</td>
<td>0.032%</td>
<td>0.32%</td>
<td>3.26%</td>
<td>32.6%</td>
</tr>
</tbody>
</table>

It is seen that a GIFcell could in principle be several meters long while retaining high mechanical efficiency. The other adjustable parameters are the energy density of the suspension, which could increase by a factor of 2 or 3 while remaining within the sulfur solubility limit, and the number of tilts required, which could decrease; both would further decrease the mechanical losses from those shown.
Figure S1: Comparing the slip-corrected flow curves measured at 25 °C of 0.5 vol% and 1.5 vol% KB of 2.5 M Li$_2$S$_8$ triglyme suspension (0.5 M LiTFSI salt and 1 wt% LiNO$_3$) with ketchup (Heinz 57®). All these fluids exhibit a yield stress and shear-thinning behavior.
Figure S2: (a) Comparison of fits to different yield stress models to the slip-corrected flow curve data measured for a 2.5 M Li$_2$S$_8$ suspension in triglyme with 0.5 vol% KB, 0.5 M LiTFSI and 1 wt% LiNO$_3$ at $T = 25^\circ$C. (b) Flow curves for a triglyme-based suspension at $T = 25$ °C measured at different gaps ($H = 1, 0.75, 0.5$ and 0.4 mm) on a stainless steel and Teflon®.

Figure S3: A snapshot of Movie S2 shows how the droplet of 2.5 M Li$_2$S$_8$ suspension (0.5 vol% KB, 0.5 M LiTFSI and 1 wt% LiNO$_3$) behaves on (a) ABS-material and (b) Teflon®. The droplet spreads and sticks on to the surface in the former, while the same droplet rolls freely without getting pinned to the surface.
Figure S4: Comparing the advancing and receding contact angles of a 0 vol% and a 0.5 vol% KB, 2.5 M Li$_2$S$_8$ suspension (0.5 M LiTFSI and 1 wt% LiNO$_3$ in triglyme) on a clean Teflon® surface. The experiment was carried out using a goniometer (Ramé-hart model 590).
Figure S5: The current density extracted and the average speed of the catholyte show a dependence of the tilt angles (30°, 60° and 90°) of the GIFcell during potentiostatic discharge at 2.00 V. The dimensions of the flow channel are: $H = 1.6$ mm, $L = 80$ mm, $W = 13$ mm. The average speed of the suspension plug is calculated by dividing the length of flow (L_{tank}) with flow time. Catholyte: 2.5 M Li$_2$S$_8$ (with respect to the S) suspension with 0.5 vol% KB, 0.5 M LiTFSI, 1 wt% LiNO$_3$ in tetraglyme. Anode: Lithium metal.
Figure S6: 1st and 5th cycle of GIFcell angled at 10° (with respect to the horizontal) during electrochemical testing using potentiostatic mode of operation (Discharging at 2.05 V and charging at 2.6 V). Catholyte: 2.5 M Li\textsubscript{2}S\textsubscript{8} (with respect to the S) suspension with 0.5 vol% KB, 0.5 M LiTFSI, 1 wt% LiNO\textsubscript{3} in triglyme. Anode: Lithium metal.

References