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Figure S1. PL spectra at 300 K (a) and 190 K (b) from a CH3NH3PbI3 film over time under 

illumination with a continuous wave (CW) laser at a wavelength of 532 nm, with an intensity of 

~60 mW cm-2, producing photo-excitation densities comparable to 1-sun AM 1.5 illumination. 

The emission was collected using a fiber-coupled Ocean Optics Mayapro spectrometer with 

integration times of 20-200 ms. The insets show the normalized spectra, indicating that the PL 

spectral shape and position do not significantly change over time at either temperature. 
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Figure S2. Temperature-dependent time-resolved PL changes over time under illumination. A 

selection of time-resolved PL decays from a thin CH3NH3PbI3 film measured over time under 

illumination at 190 K (a), 220 K (b), 250 K (c) and 330 K (d). The stated times in the legend are 

time stamps at the end of the integration window for each curve. The sample was photoexcited 

with pulsed excitation (507 nm, 1 MHz repetition rate, 117 ps pulse length and 0.3 J cm-2 per 

pulse) and the emission was detected at 780 nm.
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Figure S3. PL relaxation for varying times in the dark (no illumination). In each case, the PL is 

first allowed to reach a stabilized emission under illumination, then the laser switched off for a 

fixed length of time and then switched back on, with the PL continually monitored. The red 

closed circles represent the value of the PL intensity immediately after switching on the laser, 

and these values are used to generate Figure 1d. The samples were photoexcited with pulsed 

excitation (507 nm, 1 MHz repetition rate, 117 ps pulse length and 0.3 J cm-2 per pulse) and the 

emission at 780 nm is time-integrated. Note the sample was first illuminated for some time to 

reach its initial stabilized emission level (i.e. the level at t = 0).
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Figure S4. Dynamics of defect migration. Left (right): simulated migration of  VI
+ (Ii

-) 

dynamics at 450 K. The upper panels show the structural evolution characterizing the defect 

migration. In the lower panels we show the time evolution of selected Pb-I distances (see upper 

panels for atomic labels) related to migration of the defect from site to site along with the 

average value of the  angle characterizing the global orientation of the methylammonium 

cations.
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Figure S5. Supercell models for the isolated Ii
- and VI

+ defects. 
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Figure S6. Density of the VI
+ Ii

- couple defects vs temperature. In black and red the density of 

the couple calculated at large distance in the same supercell without and with configurational 

entropy respectively. In green the density calculated for the isolated defects comprehensive of 

configurational entropy is reported.   


