Electronic Supplementary Information (ESI)

for

Highly water-soluble three-redox state organic dyes as bifunctional analytes

Javier Carretero-González,‡a* Elizabeth Castillo-Martínez,‡a and Michel Armanda

aCIC EnergiGUNE, Alava Technology Park, C/ Albert Einstein 48 Ed. CIC, Minaño, Álava 01510, Spain

*E-mail: jc966@cam.ac.uk, jabenzo@hotmail.com

‡Present address: Department of Chemistry, University of Cambridge,

Lensfield Road, Cambridge CB2 1EW, UK

This file includes:

Additional Methods:

Infrared Spectroscopy.

Raman Spectroscopy.

X-Ray Diffraction.

Thermogravimetric Analysis.

Nuclear Magnetic Resonance
Supplemental Figures:

Figure S1: Cyclic voltammogram of Naphtazarin.

Figure S2: Cyclic voltammograms of Indigo and Indigo Carmine and protonated Indigo Carmine in both acidic and basic aqueous based electrolyte.

Figure S3: Cyclic Voltammogram of bis-quinones in basic and neutral pH.

Figure S4: X-Ray diffraction of the three families of organic dye’s derivatives studied here.

Figure S5: IR and Raman characterization of Quinizarin and Quinizarin-SO$_3$-Na.

Figure S6: IR characterization of the three families of organic dyes studied along the present work.

Figure S7: Thermogravimetric analysis in air and argon atmosphere.

Figure S8: Electrochemical properties of protonated Indigo Carmine in acidic and basic aqueous based electrolyte.

Figure S9: Cyclic voltammogram of Quinizarin derivatives.

Figure S10: Cyclic voltammogram of Alizarin derivatives.

Figure S11: 1H NMR spectroscopy of Indigo Carmine and its oxidized form.

Figure S12: 13C NMR spectroscopy of Indigo Carmine and its oxidized form.

Figure S13: 1H and 13C NMR spectroscopy of Indigo Carmine and its reduced form.

Figure S14: 1H and 13C NMR spectroscopy of Alizarin S. Red and its oxidized and reduced forms.
Supplemental Tables:

Table S1: Content of water molecules on each organic dye’s derivatives.

Table S2: Solubility results.

Additional Methods.

Infrared Spectroscopy. ATR-FTIR spectra were recorded on Vertex 70 spectrometer (Bruker) in the range of wavelength of 4000-400 cm⁻¹.

Raman Spectroscopy. Raman spectra were recorded with a Renishaw spectrometer (Nanonics multiview 2000) operating with an excitation wavelength of 532 nm. The spectrum was acquired after 20 seconds of exposition time of the laser beam to the sample.

X-Ray Diffraction. Powder X-ray diffraction of dried powdered samples was collected on a Bruker Advance D8 instrument with copper radiation (CuKα₁,₂, λ=1.54056 Å in the 2θ range from 4° to 80° with a step size of 0.02.

Thermogravimetric Analysis. The measurements were performed on a Netzsch STA 449 F3 Jupiter analyzer. Experiments were performed in the temperature range from 30 °C to 900 °C using Ar (60 ml min⁻¹) or Air (60 ml min⁻¹) atmosphere and a temperature step of 5 °C min⁻¹.

Nuclear Magnetic Resonance. Liquid Proton and carbon nuclear magnetic resonance (¹H and ¹³C NMR) were recorder using a Bruker DCH Cryoprobe (500 MHz) at 25 °C. Both proton and carbon chemical shifts were expressed in parts per million (ppm).
Supplemental Figures:

Figure S1. Cyclic voltammogram of 5,8-dihydroxy-1,4-naphthoquinone (Naphtazarin) in 0.1M HClO$_4$ in the -0.1 V to + 0.9 V vs Ag/AgCl range. (Pt was used as counter electrode and Ag/AgCl as reference electrode; Scan rate = 200 mV s$^{-1}$).

Figure S2. Cyclic voltammograms (1st cycle) of (A) Indigo and Indigo Carmine in 0.1 M HClO$_4$; (B) Indigo Carmine in 0.1M KOH (red line) and in DI-H$_2$O (blue line). (Pt was used as counter electrode and Ag/AgCl as reference electrode; Scan rate = 200 mV s$^{-1}$).
Figure S3. Cyclic voltammograms of bis-quinones in basic and neutral pH. (A) First cycle for Alizarin S. Red and Quinizarine-SO₃Na in 0.1M KOH. (B) Cycles 1, 5 and 10 for Quinizarine-SO₃-Na in DI-H₂O. (C), Cycles 1, 5 and 10 for Alizarine S Red in DI-H₂O. (Pt was used as counter electrode and Ag/AgCl as reference electrode; Scan rate = 200 mV s⁻¹).
Figure S4. Powder X-Ray diffraction patterns for the three families of dye’s derivatives studied here showing that upon sulfonation and cationic exchange the salts present different crystal structures. (A) Quinizarin, (B) Alizarin, and (C) Indigo derivatives.
Figure S5. (A-B) IR and (C-D) Raman spectra of commercial Quinizarin and as prepared Quinizarin-SO\textsubscript{3}Na analytes showing new vibrations due to the sulphonate groups.
Figure S6. IR characterization of the three families of organic analytes studied along the present work. (A) Quinizarin based (B) Alizarin and (C) Indigo derivatives.
Figure S7. Thermogravimetric analysis of three salts of three water-soluble organic analytes studied here under Air (A-C-E) and Argon (B-D-F) atmosphere.
Figure S8. (A) Electrochemical properties of protonated Indigo Carmine in acidic and basic aqueous based electrolyte; (B) protonated Indigo Carmine in BR pH 3 and 9 (cycles 1 and 10); (Pt was used as counter electrode and Ag/AgCl as reference electrode; Scan rate = 200 mV s\(^{-1}\)).
Figure S9. Cyclic Voltammogram of Quinizarin derivatives. (A) Quinizarin and sulphonated quinizarin in 0.1M HClO₄; (B) Sulphonated quinizarin with Na exchanged by H⁺, TKEN⁺ and TKMP⁺ in 0.1M HClO₄; (C) H⁺ substituted sulphonated quinizarine in 0.1M HClO₄, BR at pH=7 and D.I. water; (D) TKEN substituted sulphonated quinizarine in 0.1M HClO₄, BR at pH=7 and D.I. water. (Pt was used as counter electrode and Ag/AgCl as reference electrode; Scan rate = 200 mV s⁻¹).
Figure S10. Cyclic voltammogram of Alizarin derivatives. (A) Alizarin and sulphonated alizarin (Aliz S Red) in 0.1M HClO₄; (B) Alizarine S Red with Na exchanged by H⁺, TKEN⁺ and TKMP⁺ in 0.1M HClO₄; (C) H⁺ substituted Alizarine S Red in 0.1M HClO₄, BR at pH=7 and D.I. water; (D) TKEN substituted Alizarine S Red in 0.1M HClO₄, BR at pH=7 and D.I. water. (Pt was used as counter electrode and Ag/AgCl as reference electrode; Scan rate = 200 mV s⁻¹).
Figure S11. 1H NMR spectra of pristine Indigo Carmine and Indigo Carmine after chemical oxidation by using PbO$_2$ in deoxygenated and deionized water (DI-H$_2$O). (A) 1H NMR spectrum of Indigo Carmine in deionized water; (B) 1H NMR spectrum of the oxidized form of Indigo Carmine at room temperature exhibiting an extra broad resonance at \sim7.1 ppm (shadow blue area). (C) 1D NOESY spectrum showing the suppression of those proton nuclei that are easily exchangeable with the D$_2$O/H$_2$O mixture. (D) Highly resolved (higher number of scans than the spectrum shown in Figure S11C) 1H NMR spectrum of the oxidized form of Indigo Carmine evidencing resonances corresponding to the Isatin derivative produced by peroxidative cleavage of the carbon-carbon double bond in the Indigo Carmine molecule. (E) 1H NMR spectrum corresponding to the oxidation reaction performed at 50 °C.
Figure S12. 13C NMR spectra of (A) pristine Indigo Carmine and (B) Indigo Carmine after chemical oxidation at room temperature by using PbO$_2$ in deoxygenated and deionized water (DI-H$_2$O).
Figure S13. 1H (A)-(B) and 13C (C)-(D) NMR spectra of pristine Indigo Carmine and Indigo Carmine after chemical reduction at room temperature by using Na$_2$S$_2$O$_4$ in deoxygenated and deionized water (DI-H$_2$O).

Figure S14. 1H NMR spectra of (A) pristine Alizarin S. Red, (B) Alizarin S. Red chemically oxidized with PbO$_2$ and (C) Alizarin S. Red chemically reduced with Na$_2$S$_2$O$_4$. 13C NMR spectra of (D) pristine Alizarin S. Red and (E) Alizarin S. red
chemically reduced. All the chemical reactions were carried out in deoxygenated and deionized water (DI-H$_2$O) at room temperature.

Supplemental Tables:

Table S1. Content of water molecules on each analyte derivatives as deduced from thermogravimetric analysis.

<table>
<thead>
<tr>
<th>Quinizarin</th>
<th>Alizarin</th>
<th>Indigo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-H. 3.2 H$_2$O</td>
<td>A-H. 0.6 H$_2$O</td>
<td>I-H. 3.4 H$_2$O</td>
</tr>
<tr>
<td>Q-TKEN. 0.89 H$_2$O</td>
<td>A-TKEN. - H$_2$O</td>
<td>I-TKEN. 0.86 H$_2$O</td>
</tr>
<tr>
<td>Q-TKMP. 1.2 H$_2$O</td>
<td>A-TKMP. 1.8 H$_2$O</td>
<td>I-TKMP. 3.7 H$_2$O</td>
</tr>
</tbody>
</table>
Table S2. Solubility by adding incremental amounts of a known volume of solvent to a known weight of dye until dissolution.