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SI1. Supporting information for Validation criteria

Internal evaluation parameters were calculated to compare the proposed models and obtain the 

best model. R2 (squared correlation coefficient) and Q2
LOO are used for that purpose that are 

calculated as follows:
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Where  are experimental properties, is the average of all , and  are the predicted values. 𝑦𝑖 �̅� 𝑦𝑖 �̂�𝑖

However, for calculating the Q2
LOO values, firstly one of compounds in the dataset is being 

excluded and its property is being calculated by the (M-1×N) model (M is the number of 

compounds and N is the number of descriptors). This process continues until every compound in 

the dataset has been excluded once and then the correlation coefficients for newly predicted 

values and experimental properties are being calculated. Furthermore, root mean square errors 

(RMSE), variation inflation factors (VIF), and Lin’s concordance correlation coefficient (CCC) 

[1] were assessed for better comparison. CCC values inspect the degree to which the pairs of 

data points fall onto the 45° (1:1) line through the origin. CCC values were calculated as below:
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where, x and y are abscissa and ordinate value of the graph plotting the experimental values 

versus the ones predicted by the mode1, respectively. n is number of compounds in the dataset,  �̅�

and  are the averages of x and y, respectively. The CCC value is also a robust evaluator for the �̅�

external evaluation of a model. 

Several other techniques were used as well to evaluate the external capability of the proposed 

models. In addition to the statistical parameters introduced above (R2, RMSE, and CCC), 
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modified r2 ( ) [2], QF1
2 [3], QF2

2 [3], QF3
2 [4] [5] are acceptable validation criteria suggested 𝑟 2

𝑚

by Golbraikh and Tropsha [6]. Modified r2 values can be calculated for both training and test set 

as follows:

𝑟 2
𝑚 = 𝑅2(1 ‒ (𝑅2 ‒ 𝑅2

0))                                                                                                              (𝐸𝑞.4)

where,  is the correlation coefficient with intercept of zero. Moreover, QF1
2, QF2

2 and QF3
2, as  𝑅2

0

OECD principles, are being calculated as follows:
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where is the number of compounds in test set,  and are the observed and predicted 𝑛(𝑒𝑥𝑡) 𝑦𝑖 �̂�𝑖 

values of the measured property in the test set. and are the average values of the �̅�𝑡𝑟𝑎𝑖𝑛 �̅�𝑒𝑥𝑡

observed and predicted properties in the training and test set, respectively. 

Based on Golbraikh and Tropsha’s models acceptance criteria [6, 7], the model criteria proposed 

by Erikson et al. [8], and all above validation methods, a model can be regarded as acceptable for 

prediction purposes if it meets the following conditions:
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1. 𝑄 2
𝐿𝑂𝑂 > 0.5

2. 𝑅2 > 0.6

3.  value is calculated by change of (𝑅2 ‒ 𝑅2
0) 𝑅2 < 0.1      𝑜𝑟 (𝑅2 ‒ 𝑅'2

0) 𝑅2 < 0.1     (𝑅'2
0

axes,  and  are the slops and in case of axes changes, namely)𝑘 𝑘'

4. 0.85 ≤ 𝑘 ≤ 1.15     𝑜𝑟    0.85 ≤ 𝑘' ≤ 1.15     

5. 𝑟 2
𝑚 > 0.5

6. 𝐶𝐶𝐶 > 0.85

7. | 𝑅 2
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ‒ 𝑅 2

𝑇𝑒𝑠𝑡| < 0.3

8. 𝑄 2
𝐹1 & 𝑄 2

𝐹2 & 𝑄 2
𝐹3 > 0.6
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SI2. Results and discussion

To derive a robust ACO-SVM model, the internal parameter of SVM was optimized using 
RMSE of Q2

LOO. The lowest RMSE of Q2
LOO was observed at C=3, ε=0.1 and γ=0.5 (Fig. S1)
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Fig. S1 Optimization of γ, ε and C parameters in SVM 

The correlations between the predicted and the experimental toxicity for ACO-MLR and optimized ACO-
SVM are shown in Fig S2.
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Fig. S2 Correlation between experimental and predicted Toxicity: A) ACO-MLR and B) ACO-
SVM 
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