Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for

Sewage sludge-based functional nanomaterials: development and applications

Shi-Jie Yuan, Xiao-Hu Dai*

State Key Laboratory of Pollution Control and Resource Reuse, College of

Environmental Science and Engineering, Tongji University, Shanghai, 200092, China

*Corresponding author:

Prof. Xiao-Hu Dai, Phone: +86-21-65986297; Fax: +86-21-65983602; E-mail:

daixiaohu@tongji.edu.cn

SS disposal	Restrictions	Reference			
Landfilling	Release of heavy metals, organic pollutants and	Environ. Pollut.			
	pathogens.	2002, 118, 393-			
	Surface and underground water contamination.	399.			
	Leachate from landfill requires treatment.				
	The increasing price of land.				
Ocean	Release of heavy metals, organic pollutants and	Waste Manage.			
dumping	pathogens.	2012, 32, 1186-			
	Destroy the marine environment.	1195.			
Incineration	Release of heavy metals.	Chem. Eng. J.			
	The handling of solid residues, e.g. bed and	2003, 96, 197-			
	filter ash.	205.			
	Emissions of dioxins and furans, NOx, N ₂ O,				
	SO_2 , as HCl, HF and C_xH_y .				
	Permits of building an incineration plant.				
	Costs (including costs for treatment of flue				
	gases and ashes)				
Land	Heavy metals accumulate in the topsoil and	Waste Manage.			
applications	crops.	2008, 28, 347-			
	Acceptance from food industry and public.	358.			
	Health effects and infectious risks.	Environ. Sci.			
	The inclusion of emerging pathogens.	Technol. 2011,			
		45, 5459-5469.			
The advantages of SS for synthesizing SFNs					
SS for	Convert approximately half of the organic	Water Res. 2009,			
synthesizing	matter into renewable liquid fuels and chemical	43, 2569-2594;			
SFNs	feedstock	Waste Manage.			
	Concentrates the heavy metals in a solid	2012, 32, 1186-			
	carbonaceous residue	1195			

Table S1. SS for synthesizing SFNs compared with other options for SS disposal

Starting materials	Synthesis process	Property	Activity	Synergistically enhanced performances	Reference
SS	One-step method	SS-derived char	Heterogeneous	SiO_2 and Al_2O_3 of the SS	Chem. Eng. J.
FeSO ₄ ·7H ₂ O	combing synthesis with	supported Fe ₃ O ₄	Fenton-like catalyst	strongly correlates with the	2012, 185-186, 44-
. –	loading			high catalytic performance	51.
SS	One-step method	SS-supported	Heterogeneous	One-electron transfer between	Appl. Catal. B:
FeSO ₄ ·7H ₂ O	combing synthesis with	Fe_2O_3	catalyst for photo-	the specific small inorganic	<i>Environ.</i> , 2014,
	loading		Fenton reaction under	molecular or metal oxides in	154 , 252-258
			both UV and vis light	the SS and the loaded Fe	
			irradiation	compound	
SS	One-step method	SS-derived carbon-	Three-dimensional	Unique Fe species embedded in	J. Taiwan Inst.
iron sludge	combining carbonization	supported iron	heterogeneous electro-	carbon matrix structure	<i>Chem. E.</i> , 2016,
	and Fe-loading	oxide	Fenton oxidation		60 , 352-360.
SS	One-step pyrolysis	Sludge Carbon	Microparticle	Co-Fenton-like effect of the	Ind. Eng. Chem.
	method at 800 °C		electrode for	SiO ₂ and Al ₂ O ₃	<i>Res.</i> , 2015, 54 ,
			adsorption and		5468-5474.
			electro-oxidation		
SS	Physicochemical	SS-derived porous	Adsorption and	Co-catalytic effect of carbon	J. Hazard. Mater.,
	activation and	carbon with	Fenton-like	plane, iron oxide and other	2013 246-247,145-
	carbonization	magnetic property	degradation	mineral like silica or alumina	153.
SS	KOH activation,	Magnetic porous	Fenton-like	Co-catalytic effect of carbon	Bioresour.
	microwave digestion in	carbon containing	degradation	plane, iron oxide and other	<i>Technol.</i> , 2014,
	the HNO ₃ solutions at pH	Fe ₃ O ₄		mineral like silica or alumina	118, 638-642.
	1, pyrolysis				
SS	SS-derived carbonaceous	SS-derived carbon	Fenton-like wet	Co-catalytic effect of the	<i>RSC Adv.</i> , 2015, 5 ,

Table S2. Synthesis and properties of the SFNs

	materials treated with	with surface	peroxide oxidation	surface-modified groups after	41867-41876.
	different kinds of acid	modification		oxyacid treatment with the co-	
				catalytic effect of the inherent	
				component of the SS, Fe^{3+} , and	
				SiO ₂	
SS	Carbonization; physical	SS-based activated	Wet air oxidation	Free radicals generated by the	Appl. Catal. B:
	activation (steam or CO ₂)	carbons		surface functional carbonyl	<i>Environ.</i> , 2011,
	and chemical activation			group and the active metal	101 , 306-316.
	(K ₂ CO ₃); HCl washing			species (especially Fe species)	
SS	Carbonization; physical	SS-based activated	Wet air oxidation	Free radicals generated by the	Appl. Catal. B:
	activation (steam or CO_2)	carbons		surface functional carbonyl	<i>Environ.</i> , 2011,
	and chemical activation			group and the active metal	110 , 81-89.
	(K ₂ CO ₃); HCl washing			species (especially Fe species)	
SS	Carbonization, different	SS-based carbons	Wet air oxidation	High content of iron and	Catal. Sci.
	kinds of acids washing			surface functional groups	<i>Technol.</i> , 2016, 6 ,
					1085-1093.
SS	One-step method	SS-derived carbon-	Wet air oxidation	High content of iron and	J. Hazard. Mater.,
FeSO ₄ ·7H ₂ O	combining the carbon	supported iron		surface functional groups	2014, 276 , 88-96.
	synthesis with the Fe	oxide			
	loading				
SS	Physicochemical	SS-derived carbon	Heterogeneous	SS-derived carbon-based SFN	J. Hazard. Mater.,
	activation and		catalytic ozonation	with O ₃	2012, 239-240 ,
	carbonization				381-388.
SS	ZnCl ₂ activation,	SS based activated	Heterogeneous	SS-derived carbon-based SFN	Bioresour.
Mn and Fe	carbonization, wet	carbon supported	catalytic ozonation	with O ₃	<i>Technol.</i> , 2014, 166 , 178-186.

nitrate	impregnation	manganese and ferric oxides			
SS TiOSO ₄ ·2H ₂ O	One-step hydrothermal process	Sewage sludge support and in situ doped TiO ₂	Heterogeneous TiO ₂ photocatalyst	<i>In situ</i> doping of TiO ₂ with transition metals (Fe, Cu, and Cr) originating from the sewage sludge	<i>RSC Adv.</i> , 2014, 4 , 61036-61044.
SS	Facile one-step pyrolysis process, immersed in 20 wt% HF	N, O-codoped SFN	Electrochemical energy storage	Hierarchical porous structure and heteroatom doping effects	<i>RSC Adv.</i> , 2015, 5 , 45827-45835.
SS	Carbonization,30% HF solution and KOH activation	3D honeycomb- like hierarchically structured carbon	Electrochemical energy storage	Hierarchically structured	<i>J. Mater. Chem. A</i> , 2015, 3 , 15225-15234.
SS	One-step carbonation process	SS biochars	ORR electrocatalysts	Abundant micropores, and high nitrogen and iron contents	<i>Bioresour.</i> <i>Technol.</i> , 2013, 144 , 115-120.
SS	One-step carbonation process, acids washing	N, Fe, and S co- doped carbon	ORR electrocatalysts	Multi-doped heteroatoms	<i>Sci. Rep.</i> , 2016, 6 , 27570.
SS coconut shells	Mixed, carbonation	SS-derived biochar	ORR electrocatalysts	Enhanced electrical conductivity, N, P, and the N- coordinated Fe groups	J. Mater. Chem. A, 2015, 3 , 8475- 8482.
SS	Carbonation in NH ₃ , HCl washed	N, Fe, and S multi- doped carbon	ORR electrocatalysts	Multi-doped heteroatoms	<i>Green Chem.</i> 2016, 18 , 4004- 4011.