Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2016

1 [Supporting Information]

2	Photoenhanced Oxidation of C ₆₀ Aggregates
3	(nC ₆₀) by Free Chlorine in Water
4	
5	Jiewei Wu [†] , Wenlu Li [†] , and John D. Fortner ^{†*}
6	
7	
8	
9	[†] Department of Energy, Environmental and Chemical Engineering,
10	Washington University in St. Louis, St. Louis, MO 63130, USA
11	
12	Submitted to
13	Environmental Science: Nano
14	September 2016
15	
16	
17	*To whom correspondence should be addressed:

18 John D. Fortner: Tel: +1-314-935-9293; Fax: +1-314-935-5464; Email: jfortner@wustl.edu

19 Calculation of chlorination reaction constants in Table 1:

As described by Equations (4) - (7) in the main text, the overall oxidation reaction of nC_{60} under aerobic and anaerobic conditions can be expressed as Equation (8) and (9) respectively, which can be further understood with Equation S1 and S2:

$$\ln \frac{F}{F_{0}} + k_{1}t = k_{uv} \frac{\left(\left[Cl_{2}\right]_{0} - k_{3}t\right)^{2} - \left[Cl_{2}\right]_{0}^{2}}{2k_{3}} \qquad (Aerobic) \qquad (S1)$$

$$\ln \frac{F}{F_{0}} = k_{uv} \frac{\left(\left[Cl_{2}\right]_{0} - k_{3}t\right)^{2} - \left[Cl_{2}\right]_{0}^{2}}{2k_{3}} \qquad (Anaerobic) \qquad (S2)$$

Here, k_{UV} represents the oxychlorination reaction of nC_{60} by free chlorine and the rate constants for nC_{60} and oxygen (k_1) can be derived from control experiments with no free chlorine under aerobic conditions (Fig. 1b). Initial chlorine concentration ([Cl]₀) and degradation rate constants (k_3) were identified through chlorine concentration monitored during the reaction (Fig. S1). Thus, the rate constants between nC_{60} and free chlorine under UV irradiation can be derived from Equation S1 and S2 (with known variables: k_1 , k_3 , [Cl₂]₀), which is shown in Fig. S2 as an example. 32 Free chlorine photodecomposition and subsequent reactions in water:¹⁻⁶

33 HOCl $(hv) \rightarrow \bullet OH + Cl \bullet$ (S3)

34
$$\operatorname{OCl}^{-}(hv) \to \operatorname{O}_{2}^{\bullet^{-}} + \operatorname{Cl}^{\bullet}$$
 (S4)

- 35 $\text{Cl} \bullet + \text{OCl}^{-} (\text{HOCl} -) \rightarrow \text{ClO} \bullet + \text{Cl}^{-} (\text{HCl}^{-})$ (S5)
- 36 •OH + OCl⁻ (HOCl) \rightarrow ClO• + OH⁻ (H₂O) (S6)
- 37 $\operatorname{Cl}_{\bullet} + \operatorname{Cl}_{-} \to \operatorname{Cl}_{2}^{\bullet}$ (S7)
- 38 $Cl_2O(hv) \rightarrow Cl \bullet + ClO \bullet$ (S8)
- $39 \quad \text{Cl} \bullet + \text{Cl}_2\text{O} \rightarrow \text{Cl}_2 + \text{ClO} \bullet \tag{S9}$
- 40 $\operatorname{Cl}_2 O(hv) \rightarrow \operatorname{Cl}_2 + O(^{3}P)$ (S10)

41

42 Fig. S1 Free chlorine concentrations during the reactions with different conditions: (a) 10 mg/L
43 Cl₂; (b) 50 mg/L Cl₂; (c) 100 mg/L Cl₂.

Fig. S2 Linear relationship between $f_1(t)$ and $f_2(t)$ for k_{uv} derivation (condition: 100 mg/L Cl₂, $f_1 = \ln \frac{F}{F_0} + k_1 t; f_2 = \frac{([Cl_2]_0 - k_3 t)^2 - [Cl_2]_0^2}{2k_3}$ 46 UVA irradiation, aerobic):

46 UVA irradiation, aerobic):

48 Fig. S3 Cl2p XPS spectrum of NaCl and curve fitting analysis.

Fig. S4 Aggregation profiles of nC_{60} and reacted products in the presence of NaCl and MgCl₂ (pH ~ 6.5): (a) unreacted nC_{60} in NaCl; (b) reacted nC_{60} in dark (100mg/L Cl₂, 2h) in NaCl; (c) reacted nC₆₀ under UV (no free chlorine, 2h) in NaCl; (d) reacted nC_{60} under UV (100 mg/L Cl₂, 2h) in MgCl₂; (g) naCl; (e) unreacted nC_{60} in MgCl₂; (f) reacted nC_{60} in dark (100mg/L Cl₂, 2h) in MgCl₂; (g) reacted nC_{60} under UV (no free chlorine, 2h) in MgCl₂; (d) Reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂; (f) reacted nC_{60} in MgCl₂; (h) reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂; (h) reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂; (h) reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂; (h) reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂; (h) reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂; (h) reacted nC_{60} under UV (100 mg/L Signature Cl₂, 2h) in MgCl₂.

57 **Fig. S5** TEM images of (a) Unreacted nC_{60} ; (b) nC_{60} under UV irradiation for 2 hours; (c) nC_{60} 58 with 100 mg/L Cl₂ in dark for 2 hours; (d) nC_{60} with 100 mg/L Cl₂ under UV for 2 hours. (Scale 59 bar: 200 nm)

61 Fig. S6 Water-octanol coefficients (K_{ow}) of parent nC₆₀ and reacted products under varied

62 experimental conditions for 2 hours (pH \sim 7.5).

C (1s)						Cl (2p)			
Peak 1		Peak 2		Peak 3		Peak 1&2		Peak 3&4	
Position	Ratio	Position	Ratio	Position	Ratio	Position	Ratio	Position	Ratio
(eV)	(%)	(eV)	(%)	(eV)	(%)	(eV)	(%)	(eV)	(%)
282.82	89.32	286.52	7.59	289.03	3.09				
284.80	72.35	286.26	18.48	288.62	9.17				
284.73	81.39	286.50	4.59	288.36	14.02	197.58/199.25	67.59/32.41		
284.75	55.71	286.19	21.81	288.51	22.48	197.22/199.18	46.44/30.93	199.85/201.21	14.66/7.97

Table S1. C(1s) and Cl(2p) XPS analysis of nC_{60} and reacted products under varied experimental

64 conditions.

66 Reference

- H. Cosson and W. R. Ernst, *Industrial & Engineering Chemistry Research*, 1994, 33, 1468-1475.
- 69 2. M. J. Watts and K. G. Linden, *Water Research*, 2007, **41**, 2871-2878.
- B. Rao, N. Estrada, S. McGee, J. Mangold, B. Gu and W. A. Jackson, *Environmental Science & Technology*, 2012, 46, 11635-11643.
- 72 4. L. H. Nowell and J. Hoigné, Water Research, 1992, 26, 599-605.
- G. V. Buxton and M. S. Subhani, *Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases*, 1972, **68**, 947-957.
- G. D. Smith, F. M. G. Tablas, L. T. Molina and M. J. Molina, *The Journal of Physical Chemistry A*, 2001, **105**, 8658-8664.