Electrochemical DNA sensing strategy based on strengthening electronic conduction and signal amplifier carrier of nanoAu/MCN compositied nanomaterials for sensitive lead detection

Guangming Zeng,,\textordmasculine a\textordmasculine b Yuan Zhu,,\textordmasculine a\textordmasculine b Yi Zhang,,\textordmasculine a\textordmasculine b Chang Zhang,,\textordmasculine a\textordmasculine b Lin Tang,,\textordmasculine a\textordmasculine b Pucan Guo,,\textordmasculine a\textordmasculine b Lihua Zhang,,\textordmasculine a\textordmasculine b Yujie Yuan,,\textordmasculine a\textordmasculine b Min Cheng,\textordmasculine a\textordmasculine b and Chunping Yang,\textordmasculine a\textordmasculine b

aCollege of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China

bKey Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
FIGURE LEGENDS:

Figure S1. Morphology of the nanomaterial: (A) MCN (TEM and SEM), (B) EAu (SEM), (C) nanoAu/MCN (TEM and SEM).

Figure S2. Nitrogen adsorption–desorption isotherms and the corresponding pore distribution curves of MCN.

Figure S3. Cyclic voltammograms of bare, MCN, EAu/MCN, DNA/EAu/MCN modified electrode in 10 mM KCl solution containing 5.0 mM ferricyanide at a scan rate of 50 mV/s.

Figure S4. The MB current signals on the modified electrode at electrodeposition EAu times (A); Pb$^{2+}$ reaction times (B); the current signals in different pH solution(C); S1 was hydrolyzed temperature (D), upon exposure to 1.0×10$^{-12}$ M Pb$^{2+}$ in 10 mM Tris-HCl with 10.0 mM KCl. The bars represent the standard deviations of the mean values (n=3).

Figure S5. The MB adsorption condition of nanoAu/MCN: (A) pH, (B) ion, (C) temperature, (D) reaction time in 10 mM Tris-HCl with 10.0 mM KCl. The bars represent the standard deviations of the mean values (n=3).
Figure S1. Morphology of the nanomaterial: (A) MCN (TEM and SEM), (B) EAu (SEM), (C) nanoAu/MCN (TEM and SEM).
Figure S2. Nitrogen adsorption–desorption isotherms and the corresponding pore distribution curves of MCN.
Figure S3. Cyclic voltammograms of bare, MCN, EAu/MCN, DNA/EAu/MCN modified electrode in 10 mM KCl solution containing 5.0 mM ferricyanide at a scan rate of 50 mV/s.
Figure S4. The MB current signals on the modified electrode at electrodeposition EAu times (A); Pb$^{2+}$ reaction times (B); the current signals in different pH solution (C); S1 was hydrolyzed temperature (D), upon exposure to 1.0×10$^{-12}$ M Pb$^{2+}$ in 10 mM Tris-HCl with 10.0 mM KCl. The bars represent the standard deviations of the mean values (n=3).
Figure S5. The MB adsorption condition of nanoAu/MCN: (A) pH, (B) ion, (C) temperature, (D) reaction time in 10 mM Tris-HCl with 10.0 mM KCl. The bars represent the standard deviations of the mean values (n=3).