1 [Supporting Information]

2	Photoenhanced Transformation of Hydroxylated					
3	Fullerene (Fullerol) by Free Chlorine in Water					
4	Jiewei Wu, ^a Lawrence B. Alemany, ^b Wenlu Li, ^a Denise Benoit, ^c and John D. Fortner ^{*,a}					
5 6 7	^a Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA					
8 9	^b Department of Chemistry and Shared Equipment Authority, Rice University, Houston, TX 77005, USA					
10 11	^c Department of Chemistry, Rice University, Houston, TX 77005, USA					
12						
13	Submitted to					
14	Environmental Science: Nano					
15	2016					
16						
17						
18	*To whom correspondence should be addressed:					
19						

20 John D. Fortner: Tel: +1-314-935-9293; Fax: +1-314-935-5464; Email: jfortner@wustl.edu

21

Figure S1. Free chlorine concentrations during the reactions with different conditions: (a) 10

 $23 \ mg/L \ Cl_2; \ (b) \ 50 \ mg/L \ Cl_2; \ (c) \ 100 \ mg/L \ Cl_2.$

24

Figure S2. Fullerol (photo)chlorination reactions: (a) dark condition (20 mg/L fullerol with 100 mg/L Cl₂ at pH 6.5); (b) UVA irradiating condition (20 mg/L fullerol with 100 mg/L Cl₂ at pH

27 6.5; UVA: 351 nm, 2 mW/cm²).

28

29 Figure S3. Fullerol UV absorbance at 285 nm in the presence of free chlorine (100 mg/L Cl₂) as

30 functions of time under UV aerobic conditions (red dot: 50 mM t-BuOH; black dot: no t-BuOH).

32 Figure S4. Cl2p XPS spectrum of NaCl and curve fitting analysis.

Table S1. Total organic carbon (mg/L) of fullerol solutions after reactions under different experimental 34 conditions (TOC_{unreacted fullerol} = 10.95 ± 0.19 mg/L)

Light Condition	Dark (30d)		UVA (3h)	
Initial Cl ₂ (mg/L)	10	100	10	100
TOC (mg/L)	10.6±0.55	10.9±0.03	10.38±0.55	10.67±0.12