Electronic Supplementary Information (ESI)

Ultrasensitive Detection of Orthophosphate Ions with Reduced Graphene Oxide/Ferritin Field-effect Transistor Sensors

Shun Mao, Haihui Pu, Jingbo Chang, Xiaoyu Sui, Guihua Zhou, Ren Ren, Yantao Chen and Junhong Chen

a Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA
b State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
c Tianjin Key Laboratory for Photoelectric and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

Electronic Supplementary Information (ESI) available: sensing response of another sensor without probe linker; control sensing test of the sensor without probe; pH impact study; and sensor recycling study.
Figure S1. Dynamic sensing responses of another typical sensor without probe linker.

without ferritin probe

Figure S2. Control sensing test of a sensor without ferritin probe. The sensor without probe shows negligible responses to HPO_4^{2-}.

Test with pH from 7 to 9

Figure S3. Sensor responses to control water solutions with a pH from 7 to 9. The sensor has no responses to pH in this range, which indicates that the sensor is stable for HPO_4^{2-} sensing in a weak basic condition.
Figure S4. (a-e) Recycling tests of the rGO/ferritin sensor. The sensor was tested for five times with a probe recovery treatment in an NaOH and NaCl solution between each test. (f) Sensitivity summary of the sensor to 250 nM and 2.5 µM HPO$_4^{2-}$ in each test.