Electronic Supplementary Information

Reverse Trojan-horse effect decreased wastewater toxicity in the presence of inorganic nanoparticles

Idoia Martín-de-Lucía¹, Marina C. Campos-Mañas², Ana Agüera², Ismael Rodea-Palomares¹, Ismael Rodea-Palomares¹, Gerardo Pulido-Reyes³, Francisco Leganés³, Francisca Fernández-Piñas³, Roberto Rosal¹,‡

¹ Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
² CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
³ Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Spain

CONTENTS

Experimental Section: Combination index (CI) for determining combined toxicities. Apparent octanol-water distribution coefficient. Transmission electron micrographs of cyanobacterial cells. Staining and observation of lipid droplets.

Table S1. Properties of studied nanomaterials. Average particle diameter (DLS) and zeta potential of suspensions in water, AA/8+N and wastewater at pH 8 after 24 in contact

Table S2. Wastewater characterization parameters

Table S3. Concentrations of pollutants in wastewater and physicochemical properties of pollutants contained in wastewater.

Fig. S1. Amount adsorbed (size of bubble proportional to the amount adsorbed in μg/m) as a function of Dow and Kow (Table S3). The results are shown for compounds significantly adsorbed with respect to the experimental error. (Compounds numbered as in Table S3.)

Fig. S2. Percent recovery of wastewater pollutants after washing the filter two times with methanol as indicated in the text. (The results are showed only for compounds significantly adsorbed in the nanoparticles.)

Table S4. Dose-effect relationship parameters obtained using the computer software CompuSyn for wastewater (WW), individual nanoparticles and binary mixtures.

Table S5. Toxicity reported in the literature for the wastewater pollutants identified in this work.

Fig. S3. Staining and visualization of lipid droplets. Representative confocal images of Anabaena sp. PCC 7120 CPB4337 cells (a) non exposed and cells exposed to (b) 451.5 mg/L of SiO2, and (c) 442.6 mg/L of SiO2-NH2 nanoparticles. Images are (left to right) bright field, chlorophyll fluorescence (red), and Bodipy 505/515 fluorescence (green). Arrows indicate single cells detached from filaments.

¹ Current address: Department of Agricultural and Biological Engineering, University of Florida
284 Frazer Rogers Hall, Gainesville, FL 32611-0570
² Corresponding author: roberto.rosal@uah.es
Experimental Section

Combination index (CI) for determining combined toxicities. The response to combined toxicities exposure in *Anabaena* CPB4337 test was estimating using the median-effect equation (Chou and Talalay, 1984) based on the mass-action law:

\[
\frac{fa}{fu} = \left(\frac{D}{D_m} \right)^m
\]

where \(fa\) is the fraction affected by a certain dose, \(D\), expressed as concentration of toxicant, \(fu\) is the unaffected fraction \((fa = 1-fu)\), \(D_m\) represent the dose for 50% effect (median effect-dose, EC\(_{50}\)), and \(m\) is the coefficient of the sigmoidicity of the dose-effect curve: \(m = 1, m > 1,\) and \(m < 1\) indicate hyperbolic, sigmoidal, and negative sigmoidal dose-effect curve, respectively. Therefore, the method takes into account both the potency \((D_m)\) and shape \((m)\) parameters. Eq.1 may be arranged as follows:

\[
D = D_m \left(\frac{fa}{1-fa} \right)^{1/m}
\]

The \(D_m\) and \(m\) values for each individual nanoparticle and wastewater, or mixture were determined by the median-effect plot: \(x = \log(D)\) versus \(y = \log(\frac{fa}{fu})\), which is based on the logarithmic form of Eq. (1). In the median effect plot, \(m\) is the slope and \(\log(D_m)\) is the \(x\)-intercept. The conformity of the data to the median-effect principle can be ready assessed by the linear correlation coefficient \((r)\) of the data to the logarithmic form of Eq.2. These parameters were then used to calculate doses of individual compounds and their combinations required to produce various effect levels according to Eq. (1).

Combination index values (CI) for each effect level were calculated according to the general CI equation (Chou, 2006):

\[
n_{(CI)_x} = \frac{n}{\sum_{j=1}^{n} (D_{m_j})} = \frac{n}{\sum_{j=1}^{n} [D_j]} \left(\frac{\sum_{j=1}^{n} [D_j]}{[D]} \right)
\]

where \(n\) \((CI)_x\) is the combination index for \(n\) chemicals at \(x\)% inhibition; \((D_x)_{j-n}\) is the sum of the dose of \(n\) chemicals that exerts \(x\)% inhibition in combination, \((\frac{[D_j]}{\sum_{i=1}^{n} [D_i]})\) is the proportionality of the dose of each of \(n\) chemicals that exerts \(x\)% inhibition in combination; and \((D_{m_j}) (\frac{fa_{x_j}}{[1-(fa_{x_j})]^{1/m_j}}\) is the dose of each drug alone that exerts \(x\)% inhibition. From Eq. (3), \(CI < 1\), \(CI = 1\) and \(CI > 1\) indicates synergism, additive effect and antagonism, respectively (Chou 2006).

Apparent octanol-water distribution coefficient. The pH-dependent or apparent octanol-water distribution coefficient, \(D_{ow}\), which considers the dissociation constant of acidic or basic solutes, \(pK_a\), and the current pH of wastewater, can be derived from the Herderson-Hasselbalch equations (Scheytt et al., 2005). For acidic and basic compounds, the equations are as follows:
In the case of compounds with two pKₐ, both acidic or both basic, the apparent partition coefficient can be calculated from the following equations:

For two acidic groups:

\[
D_{ow} = \frac{K_{ow}}{1 + 10^{pH - pK_{a1}}} + \frac{K_{ow}}{\left(10^{pH - pK_{a1}}\right)\left(10^{pH - pK_{a2}}\right)}
\]

For two basic groups:

\[
D_{ow} = \frac{K_{ow}}{1 + 10^{pK_{a1} - pH}} + \frac{K_{ow}}{\left(10^{pK_{a1} - pH}\right)\left(10^{pK_{a2} - pH}\right)}
\]

For compounds in which acidic and basic groups coexist, the following equation stands if pKₐ(base) > pKₐ(acid):

\[
D_{ow} = \frac{K_{ow}}{1 + 10^{pH - pK_{a1}}} + 10^{pK_{a1} - pH}
\]

In this case, the compound can be neutral for a certain pH interval. Conversely, if pKₐ(acid) > pKₐ(base) the compound is always charged, with a pH zone in zwitterionic form and Dₐₐ doesn't apply.

For neutral substances, \(D_{ow} = K_{ow}\).

Transmission electron micrographs of cyanobacterial cells. High-resolution transmission electron microscopy (TEM) images were taken on a JEOL JEM 1400 microscope operating at 100 kV in combination with energy dispersive X-ray spectroscopy (EDS). TEM samples were prepared as follows. *Anabaena* CPB4337 cells were exposed to the EC₅₀ of each nanoparticle or wastewater dilution, and to binary combinations with a fixed ratio for 24 h. Non-exposed cyanobacterial cells (control) and exposed cells were collected by centrifugation, washed three times in phosphate buffer 0.1 M, pH 7.2 for 10 min, and fixed using 4% paraformaldehyde and 2.5% glutaraldehyde in phosphate buffer for 4 h at 4 °C. The samples were subsequently rinsed three times with phosphate buffer and stored at 4 °C overnight. Postfixation was performed on 1 mm 2% agar blocks using 1% osmium tetroxide in distilled water for 1 h at room temperature. The samples were rinsed with three more times and dehydrated through a graded acetone series of 30-50-70-80-90-95-100% for 15 min. Infiltration and embedding of Spurr-resin was conducted by increasing resin concentrations in acetone (25%, 50%, 75% and 100%) for 15 min. Infiltration and embedding of Spurr-resin was conducted by increasing resin concentrations in acetone (25%, 50%, 75% and 100%). The samples were subsequently embedded in pure resin at room temperature overnight. Finally, polymerization resin polymerization tool place at 60 °C for 48 h. The sectioned samples in semi-thin (0.5 µm) and ultra-thin sections (60 nm) were stained with uranyl acetate and lead citrate.

Staining and observation of lipid droplets. The staining of lipid droplets was performed using borondipyrromethene difluoride (Bodipy) 505/515 as described Cooper et al. (2010). *Anabaena* CPB4337 cells were stained in vivo with a 50 µM aqueous solution of Bodipy 505/515 dissolved in DMSO (1%) to achieve a final concentration of 1.5 µM (0.03
% DMSO). Upon addition of the fluorochrome, *Anabaena* cells were incubated in the dark for 20 min at room temperature prior to visualization. Bodipy 505/515 fluorescence was visualized using confocal fluorescence microscope (Espirital Leica TCS SP5) with excitation at 488 nm. The emission filter was settled at 665 nm for chlorophyll fluorescence and at a window of 510-550 nm for Bodipy 505/515 fluorescence. Images were acquired with a Leica Confocal Software (LCS Lite). All comparative images were obtained under identical microscope and camera settings.

References

Table S1. Properties of studied nanomaterials. Average particle diameter (DLS) and ζ-potential of suspensions in water, AA/8+N and wastewater at pH 8 after 24 in contact.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Concentration (mg/L)</th>
<th>Water*</th>
<th>AA/8+N</th>
<th>Wastewater</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d (nm)</td>
<td>ζ-potential (mV)</td>
<td>d (nm)</td>
<td>ζ-potential (mV)</td>
</tr>
<tr>
<td>Wastewater</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AA/8+N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>180 ± 35</td>
</tr>
<tr>
<td>SiO₂</td>
<td>10</td>
<td>443 ± 78</td>
<td>-27.9 ± 0.7</td>
<td>307 ± 12</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>692 ± 28</td>
<td>-26.5 ± 0.3</td>
<td>742 ± 51</td>
</tr>
<tr>
<td>SiO₂-NH₂</td>
<td>10</td>
<td>486 ± 30</td>
<td>-28.9 ± 1.3</td>
<td>190 ± 38</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>650 ± 50</td>
<td>+3.7 ± 0.6</td>
<td>449 ± 50</td>
</tr>
<tr>
<td>TiO₂</td>
<td>10</td>
<td>132 ± 7</td>
<td>+5.7 ± 0.6</td>
<td>158 ± 59</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>445 ± 96</td>
<td>+42.5 ± 2.1</td>
<td>591 ± 85</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>10</td>
<td>27.3 ± 2.5</td>
<td>+32.4 ± 0.3</td>
<td>408 ± 20</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>38.6 ± 4.5</td>
<td>+42.6 ± 0.8</td>
<td>2380 ± 196</td>
</tr>
</tbody>
</table>

* Minor peaks occasionally detected in the tens of nanometer range.

Table S2. Wastewater characterization parameters (0.45 μm filtered samples).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>value</th>
<th>Anions and cations</th>
<th>(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.8</td>
<td>Nitrate</td>
<td>0.38</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>1.4</td>
<td>Chloride</td>
<td>125.5</td>
</tr>
<tr>
<td>Conductivity (mS/cm)</td>
<td>1.23 ± 0.03</td>
<td>Sulphate</td>
<td>143.7</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>49.2 ± 1.2</td>
<td>Fluoride</td>
<td><0.80</td>
</tr>
<tr>
<td>NPOC (mg/L)</td>
<td>17.2 ± 0.5</td>
<td>Nitrite</td>
<td><0.10</td>
</tr>
<tr>
<td>Alkalinity (mg CaCO₃/L)</td>
<td>286</td>
<td>Bicarbonate</td>
<td>348.4</td>
</tr>
<tr>
<td>Total-P (mg/L)</td>
<td>0.1</td>
<td>Sodium</td>
<td>95.3</td>
</tr>
<tr>
<td>Total-N (mg/L)</td>
<td>2.3</td>
<td>Potassium</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnesium</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcium</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammonium</td>
<td>68.4</td>
</tr>
</tbody>
</table>
Table S3. Concentrations of pollutants in wastewater and physicochemical properties of pollutants contained in wastewater.

<table>
<thead>
<tr>
<th>No.</th>
<th>Compound</th>
<th>Concentration (ng/L)</th>
<th>CAS Number</th>
<th>Molecular formula</th>
<th>log K<sub>ow</sub></th>
<th>pK<sub>a(1)</sub></th>
<th>pK<sub>a(2)</sub></th>
<th>Acid/Base</th>
<th>log D<sub>ow</sub> *</th>
<th>Main use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-Aminoantipyrine (4-AA)</td>
<td>137</td>
<td>83-07-8</td>
<td>C<sub>7</sub>H<sub>13</sub>N<sub>2</sub>O</td>
<td>-0.07</td>
<td>4.2</td>
<td></td>
<td>Weakly basic</td>
<td>-0.07</td>
<td>Metabolite of amipyrine</td>
</tr>
<tr>
<td>2</td>
<td>N-acetyl-4-aminoantipyrine (4-AAA)</td>
<td>1050</td>
<td>83-15-8</td>
<td>C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub></td>
<td>-0.13</td>
<td>5.0</td>
<td></td>
<td>Weakly basic</td>
<td>-0.13</td>
<td>Metabolite of metamizole</td>
</tr>
<tr>
<td>3</td>
<td>N-formyl-4-aminoantipyrine (4-FAA)</td>
<td>904</td>
<td>1672-58-8</td>
<td>C<sub>12</sub>H<sub>13</sub>N<sub>2</sub>O<sub>2</sub></td>
<td>-0.41</td>
<td>5.0</td>
<td></td>
<td>Weakly basic</td>
<td>-0.41</td>
<td>Metabolite of amipyrine</td>
</tr>
<tr>
<td>4</td>
<td>Antipyrine</td>
<td>49</td>
<td>60-80-0</td>
<td>C<sub>8</sub>H<sub>12</sub>N<sub>2</sub>O</td>
<td>0.38</td>
<td>1.4</td>
<td></td>
<td>Weakly basic</td>
<td>0.38</td>
<td>Analgesic</td>
</tr>
<tr>
<td>5</td>
<td>Atenolol</td>
<td>421</td>
<td>29122-68-7</td>
<td>C<sub>14</sub>H<sub>22</sub>N<sub>2</sub>O<sub>3</sub></td>
<td>0.16</td>
<td>9.6</td>
<td></td>
<td>Basic</td>
<td>-1.65</td>
<td>β-blocker</td>
</tr>
<tr>
<td>6</td>
<td>Azithromycin</td>
<td>184</td>
<td>83905-01-5</td>
<td>C<sub>13</sub>H<sub>22</sub>N<sub>2</sub>O<sub>12</sub></td>
<td>4.02</td>
<td>8.7</td>
<td></td>
<td>Basic</td>
<td>3.03</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>7</td>
<td>Bezafibrate</td>
<td>170</td>
<td>41859-67-0</td>
<td>C<sub>16</sub>H<sub>8</sub>C<sub>2</sub>N<sub>4</sub>O<sub>4</sub></td>
<td>4.25</td>
<td>3.6</td>
<td></td>
<td>Acidic</td>
<td>0.06</td>
<td>Antilipemic</td>
</tr>
<tr>
<td>8</td>
<td>Caffeine</td>
<td>255</td>
<td>58-08-2</td>
<td>C<sub>9</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub></td>
<td>-0.07</td>
<td>0.8</td>
<td></td>
<td>Neutral</td>
<td>-0.07</td>
<td>Stimulant</td>
</tr>
<tr>
<td>9</td>
<td>Carbamazepine</td>
<td>167</td>
<td>298-46-4</td>
<td>C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>O</td>
<td>2.45</td>
<td></td>
<td></td>
<td>Neutral</td>
<td>2.45</td>
<td>Antiepileptic</td>
</tr>
<tr>
<td>10</td>
<td>Carbamazepine epoxide</td>
<td>41</td>
<td>36507-30-9</td>
<td>C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>O<sub>2</sub></td>
<td>1.58</td>
<td></td>
<td></td>
<td>Neutral</td>
<td>1.58</td>
<td>Metabolite of carbamazepine</td>
</tr>
<tr>
<td>11</td>
<td>Ciprofloxacin</td>
<td>273</td>
<td>85721-33-1</td>
<td>C<sub>16</sub>H<sub>19</sub>F<sub>3</sub>N<sub>3</sub>O<sub>3</sub></td>
<td>0.28</td>
<td>6.1</td>
<td>8.7</td>
<td>Zwitterionic</td>
<td>n.a.</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>12</td>
<td>Citalopram</td>
<td>162</td>
<td>59729-33-8</td>
<td>C<sub>29</sub>H<sub>32</sub>N<sub>2</sub>O<sub>4</sub></td>
<td>3.74</td>
<td>9.7</td>
<td></td>
<td>Basic</td>
<td>1.83</td>
<td>Antidepressant</td>
</tr>
<tr>
<td>13</td>
<td>Clarithromycin</td>
<td>169</td>
<td>81103-11-9</td>
<td>C<sub>18</sub>H<sub>20</sub>NO<sub>13</sub></td>
<td>3.16</td>
<td>9.0</td>
<td></td>
<td>Basic</td>
<td>1.94</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>14</td>
<td>Diatrizoic acid</td>
<td>1185</td>
<td>117-96-4</td>
<td>C<sub>11</sub>H<sub>13</sub>N<sub>2</sub>O<sub>4</sub></td>
<td>1.37</td>
<td>3.4</td>
<td></td>
<td>Acidic</td>
<td>-2.83</td>
<td>Diagnostic agent</td>
</tr>
<tr>
<td>15</td>
<td>Diazepam</td>
<td>25</td>
<td>439-14-5</td>
<td>C<sub>16</sub>H<sub>3</sub>C<sub>2</sub>N<sub>4</sub>O<sub>4</sub></td>
<td>2.82</td>
<td>3.4</td>
<td></td>
<td>Weakly basic</td>
<td>2.82</td>
<td>Anxiolytic</td>
</tr>
<tr>
<td>16</td>
<td>Erythromycin</td>
<td>140</td>
<td>114-07-8</td>
<td>C<sub>17</sub>H<sub>20</sub>NO<sub>13</sub></td>
<td>3.06</td>
<td>8.9</td>
<td></td>
<td>Basic</td>
<td>1.93</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>17</td>
<td>Famotidine</td>
<td>30</td>
<td>76824-35-6</td>
<td>C<sub>16</sub>H<sub>18</sub>N<sub>2</sub>O<sub>5</sub>S</td>
<td>-0.64</td>
<td>6.7</td>
<td></td>
<td>Weakly basic</td>
<td>-0.67</td>
<td>Antilucer</td>
</tr>
<tr>
<td>18</td>
<td>Fenofibric acid</td>
<td>455</td>
<td>42017-89-0</td>
<td>C<sub>17</sub>H<sub>15</sub>C<sub>2</sub>N<sub>4</sub>O<sub>4</sub></td>
<td>4.00</td>
<td>3.1</td>
<td></td>
<td>Acidic</td>
<td>-0.70</td>
<td>Metabolite of fenofibrate</td>
</tr>
<tr>
<td>19</td>
<td>Furosemide</td>
<td>528</td>
<td>54-31-9</td>
<td>C<sub>13</sub>H<sub>12</sub>C<sub>2</sub>N<sub>4</sub>O<sub>3</sub>S</td>
<td>2.03</td>
<td>3.8</td>
<td></td>
<td>Acidic</td>
<td>-1.97</td>
<td>Antihypertensive</td>
</tr>
<tr>
<td>20</td>
<td>Gemfibrozil</td>
<td>625</td>
<td>25812-30-0</td>
<td>C<sub>16</sub>H<sub>21</sub>O<sub>3</sub></td>
<td>4.77</td>
<td>4.5</td>
<td></td>
<td>Acidic</td>
<td>1.67</td>
<td>Anti-hippertensive</td>
</tr>
<tr>
<td>21</td>
<td>Hydrochlorothiazide</td>
<td>783</td>
<td>58-93-5</td>
<td>C<sub>16</sub>H<sub>21</sub>C<sub>2</sub>N<sub>4</sub>O<sub>4</sub>S<sub>2</sub></td>
<td>-0.07</td>
<td>8.6</td>
<td>10.2</td>
<td>Basic</td>
<td>-3.33</td>
<td>Anti-hippertensive</td>
</tr>
<tr>
<td>22</td>
<td>Indomethacin</td>
<td>35</td>
<td>53-86-1</td>
<td>C<sub>16</sub>H<sub>19</sub>C<sub>2</sub>N<sub>4</sub>O<sub>4</sub></td>
<td>4.27</td>
<td>4.5</td>
<td></td>
<td>Acidic</td>
<td>0.97</td>
<td>Anti-inflammatory</td>
</tr>
<tr>
<td>23</td>
<td>Iopamidol</td>
<td>703</td>
<td>60166-93-0</td>
<td>C<sub>17</sub>H<sub>21</sub>N<sub>2</sub>O<sub>8</sub></td>
<td>-2.42</td>
<td>10.7</td>
<td></td>
<td>Neutral</td>
<td>-2.42</td>
<td>Contrast agent</td>
</tr>
<tr>
<td>24</td>
<td>Ketoprofen</td>
<td>241</td>
<td>22071-15-4</td>
<td>C<sub>16</sub>H<sub>18</sub>O<sub>3</sub></td>
<td>3.12</td>
<td>5.9</td>
<td></td>
<td>Acidic</td>
<td>1.25</td>
<td>Anti-inflammatory</td>
</tr>
<tr>
<td>25</td>
<td>Lincomycin</td>
<td>8</td>
<td>154-21-2</td>
<td>C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>4</sub>S</td>
<td>0.20</td>
<td>7.6</td>
<td></td>
<td>Basic</td>
<td>-0.01</td>
<td>Antibiotic</td>
</tr>
<tr>
<td>26</td>
<td>Mepivacaine</td>
<td>26</td>
<td>96-88-8</td>
<td>C<sub>13</sub>H<sub>22</sub>N<sub>2</sub>O<sub>20</sub></td>
<td>1.95</td>
<td>7.7</td>
<td></td>
<td>Basic</td>
<td>1.70</td>
<td>Anesthetic</td>
</tr>
<tr>
<td>27</td>
<td>Metoclopramide</td>
<td>32</td>
<td>364-62-5</td>
<td>C<sub>14</sub>H<sub>22</sub>C<sub>2</sub>N<sub>4</sub>O<sub>3</sub></td>
<td>2.62</td>
<td>9.3</td>
<td></td>
<td>Basic</td>
<td>1.20</td>
<td>Antiemetic</td>
</tr>
<tr>
<td>28</td>
<td>Metoprolol</td>
<td>84</td>
<td>37350-58-6</td>
<td>C<sub>13</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub></td>
<td>1.88</td>
<td>9.7</td>
<td></td>
<td>Basic</td>
<td>-0.03</td>
<td>β-blocker</td>
</tr>
<tr>
<td>29</td>
<td>Metronidazole</td>
<td>391</td>
<td>443-48-1</td>
<td>C<sub>6</sub>H<sub>4</sub>N<sub>2</sub>O<sub>3</sub></td>
<td>-0.02</td>
<td>2.5</td>
<td></td>
<td>Weakly basic</td>
<td>-0.02</td>
<td>Antibiotic</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>CAS</td>
<td>Molecular formula</td>
<td>Log P</td>
<td>pKa</td>
<td>pKb</td>
<td>Property</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------</td>
<td>-------------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Naproxen</td>
<td>207</td>
<td>C_{14}H_{14}O_{3}</td>
<td>3.18</td>
<td>4.2</td>
<td>-0.47</td>
<td>Anti-inflammatory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Nicotine</td>
<td>368</td>
<td>C_{10}H_{14}N_{2}</td>
<td>1.17</td>
<td>3.1</td>
<td>8.0</td>
<td>Basic</td>
<td>0.76</td>
<td>Stimulant</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Ofloxacin</td>
<td>291</td>
<td>C_{18}H_{20}FN_{3}O_{4}</td>
<td>-0.39</td>
<td>6.1</td>
<td>8.2</td>
<td>Zwitterionic</td>
<td>n.a.</td>
<td>Antibiotic</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Paraxanthine</td>
<td>184</td>
<td>C_{7}H_{8}N_{2}O_{2}</td>
<td>-0.22</td>
<td>10.8</td>
<td>Weakly basic</td>
<td>-0.22 Metabolite of caffeine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Pentoxifylline</td>
<td>371</td>
<td>C_{13}H_{18}N_{4}O_{3}</td>
<td>0.29</td>
<td>0.28</td>
<td>Basic</td>
<td>0.29 Vasodilator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Pravastatin</td>
<td>138</td>
<td>C_{23}H_{30}O_{7}</td>
<td>0.59</td>
<td>4.7</td>
<td>Acidic</td>
<td>-2.51 Antilipemic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Primidone</td>
<td>345</td>
<td>C_{12}H_{13}N_{2}O_{2}</td>
<td>0.91</td>
<td>12.3</td>
<td>Weakly acidic</td>
<td>0.91 Antiepileptic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Propanolol</td>
<td>57</td>
<td>C_{16}H_{21}NO_{2}</td>
<td>3.48</td>
<td>9.4</td>
<td>Basic</td>
<td>1.87 β-blocker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Propyphenazone</td>
<td>20</td>
<td>C_{14}H_{13}NO_{2}</td>
<td>1.94</td>
<td>0.9</td>
<td>Neutral</td>
<td>1.94 Analgesic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Ranitidine</td>
<td>591</td>
<td>C_{13}H_{24}N_{3}O_{2}S</td>
<td>0.27</td>
<td>2.3</td>
<td>8.2</td>
<td>Diprotic base</td>
<td>-0.28</td>
<td>Antiacid</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Sotalol</td>
<td>61</td>
<td>C_{12}H_{20}N_{2}O_{3}S</td>
<td>0.24</td>
<td>8.3</td>
<td>9.8</td>
<td>Diprotic base</td>
<td>-2.27</td>
<td>Antiarrhythmic</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Sucralose</td>
<td>974</td>
<td>C_{12}H_{16}Cl_{3}O_{8}</td>
<td>-1.00</td>
<td>11.8</td>
<td>Neutral</td>
<td>11.8 Sweetener</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Sulfamethoxazole</td>
<td>300</td>
<td>C_{10}H_{11}N_{3}O_{3}S</td>
<td>0.89</td>
<td>1.8</td>
<td>5.6</td>
<td>Anfiprotic</td>
<td>-1.31</td>
<td>Antibiotic</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Sulfapyridine</td>
<td>204</td>
<td>C_{12}H_{11}N_{4}O_{3}S</td>
<td>0.35</td>
<td>2.3</td>
<td>8.4</td>
<td>Anfiprotic</td>
<td>0.25</td>
<td>Antibiotic</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Theophylline</td>
<td>87</td>
<td>C_{7}H_{6}N_{2}O_{2}</td>
<td>-0.02</td>
<td>8.8</td>
<td>Basic</td>
<td>-1.07 Bronchodilator/Vasodilator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Trimethoprim</td>
<td>303</td>
<td>C_{14}H_{13}N_{2}O_{2}</td>
<td>0.91</td>
<td>7.1</td>
<td>Basic</td>
<td>0.83 Antibiotic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Venlafaxine</td>
<td>338</td>
<td>C_{17}H_{27}NO_{2}</td>
<td>3.20</td>
<td>9.4</td>
<td>Basic</td>
<td>1.59 Antidepressant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* wastewater at pH 7.8
Fig. S1. Amount adsorbed (size of bubble proportional to the amount adsorbed in μg/g) as a function of D_{ow}, and K_{ow} (Table S3). The results are shown for compounds significantly adsorbed with respect to the experimental error. Compounds numbered as in Table S3. a) SiO$_2$, b) SiO$_2$-NH$_2$, c) TiO$_2$, d) Fe$_3$O$_4$.
Fig. S2. Percent recovery of wastewater pollutants after washing the filter two times with methanol as indicated in the text. (The results are showed only for compounds significantly adsorbed in the nanoparticles.)
Table S4. Dose-effect relationship parameters obtained using the computer software CompuSyn for wastewater (WW), individual nanoparticles and binary mixtures.

<table>
<thead>
<tr>
<th>Drug combo</th>
<th>Dose-effect parameters</th>
<th>(D_m)</th>
<th>(m)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>(D_m)</td>
<td>1.08</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>SiO(_2)-wastewater</td>
<td>SiO(_2)</td>
<td>402</td>
<td>0.41</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>WW-SiO(_2)</td>
<td>628</td>
<td>0.49</td>
<td>0.92</td>
</tr>
<tr>
<td>SiO(_2)-NH(_2)-wastewater</td>
<td>WW</td>
<td>1.08</td>
<td>0.92</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>SiO(_2)-NH(_2)</td>
<td>440</td>
<td>0.33</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>SiO(_2)-NH(_2)-WW</td>
<td>244</td>
<td>0.58</td>
<td>0.94</td>
</tr>
<tr>
<td>TiO(_2)-wastewater</td>
<td>TiO(_2)</td>
<td>17.8</td>
<td>0.66</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>TiO(_2)-WW</td>
<td>12.7</td>
<td>1.08</td>
<td>0.98</td>
</tr>
<tr>
<td>Fe(_3)O(_4)-wastewater</td>
<td>WW</td>
<td>1.20</td>
<td>0.75</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Fe(_3)O(_4)</td>
<td>36.9</td>
<td>0.66</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Fe(_3)O(_4)-WW</td>
<td>17.1</td>
<td>0.66</td>
<td>0.95</td>
</tr>
</tbody>
</table>

The parameters \(m\), \(D_m\) and \(r\) are the antilog of \(x\)-intercept, the slope and the linear correlation coefficient of the median-effect plot, signifying the shape of the dose-effect curve, the potency (EC\(_{50}\)), and the conformity of the data to the mass-action law, respectively. \(D_m\) and \(m\) values are used for calculating the CI values (Eq. 3, experimental section in this ESI).
<table>
<thead>
<tr>
<th>Compound</th>
<th>Taxon</th>
<th>Species</th>
<th>Toxicological endpoint</th>
<th>EC<sub>50</sub> (mg/L)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atenolol</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>1304</td>
<td>Escher et al.¹</td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Desmodesmus subspicatus</td>
<td>Photosynthetic yield (24 h)</td>
<td>1335</td>
<td>Escher et al.¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Growth inhibition (72 h)</td>
<td>620</td>
<td>Cleuvers²</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (15 min)</td>
<td>N.E</td>
<td>Harada et al.²</td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (96 h)</td>
<td>0.019</td>
<td>Harada et al.²</td>
</tr>
<tr>
<td>Bezafibrate</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (15 min)</td>
<td>178.73 (162.06–197.12)</td>
<td>Rosal et al.⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anabaena CPB4337</td>
<td>Bioluminescence inhibition (1 h)</td>
<td>37.28 (32.60–41.79)</td>
<td>Rosal et al.⁴</td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (24 h)</td>
<td>7.62 (7.01–8.41)</td>
<td>Rosal et al.⁴</td>
</tr>
<tr>
<td>Caffeine</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>671.90</td>
<td>Calleja et al.⁸</td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>N.E. 150</td>
<td>Zarrelli et al.⁹</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>87.42</td>
<td>Jos et al.¹⁰</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.5 (49.2–56.1)</td>
<td>Kim et al.¹¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (15 min)</td>
<td>78.44</td>
<td>Jos et al.¹⁰</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.2 (45.8–59.5)</td>
<td>Kim et al.¹¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (30 min)</td>
<td>> 81</td>
<td>Ferrari et al.¹²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (60 min)</td>
<td>64.27</td>
<td>Jos et al.¹⁰</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>Bacteria</td>
<td>Synechococcus leopoliensis</td>
<td>Growth inhibition (96 h)</td>
<td>33.6</td>
<td>Ferrari et al.¹³</td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Chlorella vulgaris</td>
<td>Growth inhibition (24 h)</td>
<td>110.93</td>
<td>Jos et al.¹⁰</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.62</td>
<td>Jos et al.¹⁰</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>> 100</td>
<td>Miguez et al.⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 100</td>
<td>Villain et al.⁷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desmodesmus subspicatus</td>
<td>Growth inhibition (72 h)</td>
<td>74</td>
<td>Cleuvers¹⁴</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>> 5.9</td>
<td>Hernando et al.¹⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (15 min)</td>
<td>> 5.9</td>
<td>Hernando et al.¹⁵</td>
</tr>
<tr>
<td>Microcystis aeruginosa</td>
<td>Growth inhibition (5 d)</td>
<td>0.017 (0.014-0.020)</td>
<td>Robinson et al.¹⁶</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (7 d)</td>
<td>0.005 (0.004-0.006)</td>
<td>Halling-Sorensen et al.¹⁷</td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Chlorella vulgaris</td>
<td>Growth inhibition (72 h)</td>
<td>0.102</td>
<td>Ebert et al.¹⁸</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>2.97 (2.41-3.66)</td>
<td>Halling-Sorensen et al.¹⁷</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.7</td>
<td>Yang et al.²⁰</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.7 (16.2-21.2)</td>
<td>Robinson et al.¹⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desmodesmus subspicatus</td>
<td>Growth inhibition (72 h)</td>
<td>> 0.008</td>
<td>Ebert et al.18</td>
<td></td>
</tr>
<tr>
<td>Citalopram</td>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (48 h)</td>
<td>1.6</td>
<td>Christensen et al.21</td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>NE 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anabaena flos-aquae</td>
<td>Growth inhibition (72 h)</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diazepam</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>9965.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetraselmis chuii</td>
<td>Growth inhibition (96 h)</td>
<td>16.5 (16.45–16.47)</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microcystis aeruginosa (NIES-44)</td>
<td>Growth inhibition (6 d)</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microcystis wesenbergii (NIES-107)</td>
<td>Growth inhibition (6 d)</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synechococcus sp. (PCC 7002)</td>
<td>Growth inhibition (6 d)</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synechococcus leopoliensis (IAM M-6)</td>
<td>Growth inhibition (6 d)</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anabaena cylindrica (NIES-19)</td>
<td>Growth inhibition (6 d)</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anabaena variabilis (NIES-23)</td>
<td>Growth inhibition (6 d)</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anabaena flos-aquae (ATCC 29413)</td>
<td>Growth inhibition (6 d)</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nostoc sp. (PCC 7120)</td>
<td>Growth inhibition (6 d)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Chlorella vulgaris</td>
<td>Growth inhibition (72 h)</td>
<td>33.8 (31.3–36.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72h)</td>
<td>0.02 (0.016–0.026)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0366 (0.0358–0.0399)</td>
<td></td>
</tr>
<tr>
<td>Fenofibric acid</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (15 min)</td>
<td>1.86 (1.64–2.08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anabaena CPB4337</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>1.72 (1.48–1.96)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (1 h)</td>
<td>10.82 (8.46–13.35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (24 h)</td>
<td>10.85 (6.16–13.16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>> 100</td>
<td></td>
</tr>
<tr>
<td>Furosemide</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>NE 200</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Growth inhibition (72 h)</td>
<td>N.E. 70</td>
<td></td>
</tr>
<tr>
<td>Gemfibrozil</td>
<td>Bacteria</td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>64.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (15 min)</td>
<td>45.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bioluminescence inhibition (30 min)</td>
<td>29.07 (26.77–31.37)</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Organism</td>
<td>Assay</td>
<td>Value</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Lincomycin</td>
<td>Vibrio fischer</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>N.E. 100</td>
<td>Isidori et al.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoliensis</td>
<td>Growth inhibition (96 h)</td>
<td>0.195</td>
<td>Andreozzi et al.30</td>
<td></td>
</tr>
<tr>
<td>Algae</td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>0.07 (0.05–0.10)</td>
<td>Isidori et al.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth inhibition (96 h)</td>
<td>1.51</td>
<td>Andreozzi et al.30</td>
<td></td>
</tr>
<tr>
<td>Metoprolol</td>
<td>Algae</td>
<td>Growth inhibition (72 h)</td>
<td>7.3</td>
<td>Ferrari et al.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth inhibition (72 h)</td>
<td>7.9</td>
<td>Cleuvers2</td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Algae</td>
<td>Growth inhibition (72 h)</td>
<td>38.8</td>
<td>Lanzky and Halting-Sørensen11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth inhibition (72 h)</td>
<td>39.1</td>
<td>Lanzky and Halting-Sørensen11</td>
<td></td>
</tr>
<tr>
<td>Naproxen</td>
<td>Algae</td>
<td>Growth inhibition (72 h)</td>
<td>44.4</td>
<td>Villain et al.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth inhibition (96 h)</td>
<td>31.82 (27.86–36.33)</td>
<td>Isidori et al.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desmodesmus subspicatus</td>
<td>Growth inhibition (72 h)</td>
<td>625.5</td>
<td>Cleuvers14</td>
<td></td>
</tr>
<tr>
<td>Nicotine</td>
<td>Bacteria</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>> 90.00</td>
<td>Calleja et al.8</td>
<td></td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>Bacteria</td>
<td>Growth inhibition (96 h)</td>
<td>1.44 (1.08–1.80)</td>
<td>Isidori et al.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>12.1 (10.4–13.7)</td>
<td>Robinson et al.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth inhibition (96 h)</td>
<td>4.74</td>
<td>Cleuvers14</td>
<td></td>
</tr>
<tr>
<td>Propanolol</td>
<td>Bacteria</td>
<td>Bioluminescence inhibition (30 min)</td>
<td>81</td>
<td>Escher et al.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoliensis</td>
<td>Growth inhibition (96 h)</td>
<td>0.668</td>
<td>Cleuvers14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>1.86</td>
<td>Villain et al.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desmodesmus subspicatus</td>
<td>Photosynthetic yield (24 h)</td>
<td>4.1</td>
<td>Escher et al.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth inhibition (72 h)</td>
<td>0.7</td>
<td>Ferrari et al.13</td>
<td></td>
</tr>
<tr>
<td>Ranitidine</td>
<td>Bacteria</td>
<td>Growth inhibition (128 min)</td>
<td>374</td>
<td>Bergheim et al.34</td>
<td></td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>Bacteria</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>74.2 (46.4–118.7)</td>
<td>Kim et al.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bioluminescence inhibition (15 min)</td>
<td>78.1 (24.0–25.4)</td>
<td>Kim et al.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bioluminescence inhibition (30 min)</td>
<td>> 84.00</td>
<td>Cleuvers14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.3 (16.9–32.2)</td>
<td>Isidori et al. 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 100</td>
<td>Białk-Bielińska et al. 35</td>
<td></td>
</tr>
<tr>
<td>Synechococcus leopoliensis</td>
<td>Growth inhibition (96 h)</td>
<td>0.027</td>
<td>Cleuvers 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>Growth inhibition (48 h)</td>
<td>0.98</td>
<td>Borecka et al. 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (72 h)</td>
<td>1.51 (1.05–2.19)</td>
<td>Borecka et al. 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growth inhibition (96 h)</td>
<td>0.52 (0.36–0.74)</td>
<td>Isidori et al. 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scenedosmus vacuolatus</td>
<td>Growth inhibition (24 h)</td>
<td>1.54</td>
<td>Białk-Bielińska et al. 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoliensis</td>
<td>Growth inhibition (96 h)</td>
<td>0.15</td>
<td>Cleuvers 14</td>
<td></td>
</tr>
<tr>
<td>Scenedosmus vacuolatus</td>
<td>Growth inhibition (24 h)</td>
<td>> 50</td>
<td>Białk-Bielińska et al. 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorella vulgaris</td>
<td>Growth inhibition (48 h)</td>
<td>1.93 (1.25–2.90)</td>
<td>Borecka et al. 36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growth inhibition (72 h)</td>
<td>1.00 (0.73–1.34)</td>
<td>Borecka et al. 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scenedosmus vacuolatus</td>
<td>Growth inhibition (24 h)</td>
<td>5.28</td>
<td>Białk-Bielińska et al. 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>2486.26</td>
<td>Calleja et al. 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis aeruginosa</td>
<td>Growth inhibition (7 d)</td>
<td>112 (100–126)</td>
<td>Halling-Sorensen et al. 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis aeruginosa (NIES-44)</td>
<td>Growth inhibition (6 d)</td>
<td>150</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis wesenbergii (NIES-107)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus sp. (PCC 7002)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoldensis (IAM M-6)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena cylindrica (NIES-19)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena variabilis (NIES-23)</td>
<td>Growth inhibition (6 d)</td>
<td>11</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena flos-aquae (ATCC 29413)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nostoc sp. (PCC 7120)</td>
<td>Growth inhibition (6 d)</td>
<td>53</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pseudokirchneriella subcapitata</td>
<td>Growth inhibition (24 h)</td>
<td>> 9</td>
<td>van der Grinten et al. 37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoliensis</td>
<td>Growth inhibition (72 h)</td>
<td>110 (64–192)</td>
<td>Halling-Sorensen et al. 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis aeruginosa</td>
<td>Growth inhibition (6 d)</td>
<td>80.3 (74.4–86.7)</td>
<td>Eguchi et al. 27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis wesenbergii (NIES-107)</td>
<td>Growth inhibition (6 d)</td>
<td>40</td>
<td>Yang et al. 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoldensis (IAM M-6)</td>
<td>Growth inhibition (6 d)</td>
<td>56.01 (45.82–69.10)</td>
<td>Mínguez et al. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena cylindrica (NIES-19)</td>
<td>Growth inhibition (6 d)</td>
<td>47.58 (42.49–54.01)</td>
<td>Mínguez et al. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena variabilis (NIES-23)</td>
<td>Growth inhibition (6 d)</td>
<td>11</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena flos-aquae (ATCC 29413)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nostoc sp. (PCC 7120)</td>
<td>Growth inhibition (6 d)</td>
<td>53</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibrio fischeri</td>
<td>Bioluminescence inhibition (5 min)</td>
<td>2486.26</td>
<td>Calleja et al. 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis aeruginosa</td>
<td>Growth inhibition (7 d)</td>
<td>112 (100–126)</td>
<td>Halling-Sorensen et al. 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis aeruginosa (NIES-44)</td>
<td>Growth inhibition (6 d)</td>
<td>150</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microcystis wesenbergii (NIES-107)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus sp. (PCC 7002)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synechococcus leopoldensis (IAM M-6)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena cylindrica (NIES-19)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena variabilis (NIES-23)</td>
<td>Growth inhibition (6 d)</td>
<td>11</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anabaena flos-aquae (ATCC 29413)</td>
<td>Growth inhibition (6 d)</td>
<td>> 200</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nostoc sp. (PCC 7120)</td>
<td>Growth inhibition (6 d)</td>
<td>53</td>
<td>Ando et al. 26</td>
<td></td>
</tr>
</tbody>
</table>

NE=No effect at “x” (mg/L)
References for Table S5

Fig. S3. Staining and visualization of lipid droplets. Representative confocal images of *Anabaena* sp. PCC 7120 CPB4337 cells (a) non exposed and cells exposed to (b) 451.5 mg/L of SiO$_2$, and (c) 442.6 mg/L of SiO$_2$-NH$_2$ nanoparticles. Images are (left to right) bright field, chlorophyll fluorescence (red), and Bodipy 505/515 fluorescence (green). Arrows indicate single cells detached from filaments.