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The accuracy in determining the energy is further improved by correcting the static DFT electronic

energy using the zero point energies. The zero point energy (ZPE) accounts for the vibrational energy
. : 1 o
that exists even at 0 K and is calculated as ZPE = ZEh v,where v, corresponds to the vibrational

modes of the species. To obtain more accurate results we have considered the effect of the
temperature on £, , £, and E_ and corrected them by a temperature dependent parameter. Thus,
energy as a function of temperature for each different system can be calculated using the global

partition function, Q, and several relevant physical parameters such as entropy (S), specific heat at

constant pressure (C,) and enthalpy (/) derived with the following equations; [1, 2]
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The thermodynamic properties of the intermediates on the surface or in the gas phase were calculated
using the above equations. Fig. S1 shows both the calculated and NIST database [3] thermodynamic
properties of NH; while the free energy of N,, H, is shown in Fig. S2. Table S1 contains the relative
error of the derived properties compared with the extracted datas from Shomate equations in the NIST

database [3].
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Fig. S1. Calculated thermodynamic properties of NH; in the gas phase compared with the NIST database [3].

T (K)
300 400 500 600 700 800
0 1 1 L L
NIST datas
.50 +ssaaa This work

G-H%qg 55 (k) /mol)

-100

-150

G-H%q4 55 (k) /mol)

H,

-200

Fig. S2. Calculated thermodynamic properties of N, and H, in the gas phase compared with NIST database [3].

Table S1. Relative errors (in %) of the calculated thermodynamic properties of NHs, N, and H, in the gas phase compared with the NIST
database [3].

(Cp®a-Cp’nist/Cpnast) 100 (8%01-S"Nnis1/S Nis) ¥100 (H’.y -H'Nis1/H Nis7) ¥100 (G’a1-G nisT/G Nis7) ¥100

NH; -1.37 -0.13 -0.76 -0.08
N, -0.48 -4.55 -0.30 -4.82
H, -0.61 -6.76 -0.42 -7.33

We consider the global partition function as the product of the partition functions:

Q = qtranslational ’ qrotational ’ qvibmtional ’ qelectronic ’ qnuclear (SS )

We have included translational, rotational, vibrational, electronic and nuclear contributions in the

partition functions. Usually the electronic systems are in a singlet electronic state, and the nuclear

partition functions are unity [2].



The vibrational partition function of a system [4] is obtained via,

N
1
qM=IITj;mmr (S6)

i=1
Where, i is a specific vibrational mode and N is the number of vibrations. The vibrational partition

function in the gas phase, ¢f’, is also calculated using the equation above for 3N, —6and

3N, —5 vibrational degrees of freedom of a non-linear and linear molecule in the gas phase,

respectively, where N, is the number of atoms in the molecule.

The 2D-translational partition function for a free molecule is derived by the Eq (S7);

2D _27zkaTA

trans ~ h 2 cat

(87)

The Rotational partition function for a free molecule is calculated using Eqs (S8) or (S9) depending
on its symmetry;
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Where o is the symmetry factor and 7 is the moment of inertia defined as/ = ,urz , being 4 the

reduced mass and 7 the atom distances to the centre of mass (CM).
In the heterogeneous catalytic system, the constant rate (k) of each surface elementary step is
commonly computed using the transition-state theory (TST) approximation of Eyring [5] and Evans

and Polanyi [6], as follows;

k= 4y oxp| —2C |2 Kl drs o [ ZAG (S10)
kyT hqs kyT

Where h is the Plank constant, k&  is the Boltzmann constant, T is the temperature, A4, is the pre-

exponential factor, AG™ is the reaction activation energy and; ¢, and g,z are the partition

functions of reactants and transition states respectively.



The translations and rotations of the adsorbed species are frustrated on the surface and therefore we

considered only vibrational modes [2].

In the case of the desorption processes, the partition function ¢, includes only the vibrational

frequencies, while g, is the partition function for the transition state, which we have considered as in

direct adsorption, see below.

There are two types of adsorption, direct and indirect; the direct adsorption implies that the molecule
lands immediately at its final adsorption site and stays at the point of impact as an adsorbed species
while in indirect adsorption, molecule adsorbs via a physisorbed precursor and after some time in this
state, it finds a free site to bond to the surface [2]. We have considered the direct adsorption for
molecules through this work. The rate of an adsorption process is estimated from the classical Hertz-
Knudsen equation [7], Eq (S11);

Acal

=0 (T (S11)
27k, T o)

kads,i = AOSO =

Where 4, is the pre-exponential factor, 4., is the area of one free site (3.87x10"" m? in this work)

t
and the sticking coefficient, S, (7"), is a measure of the fraction of incident molecules which adsorb

upon the surface and is calculated via Eq (S12);

s
SO(T) Z%exp(—ﬂj (512)
qtrans qrut qvib k T

B

Where the incident-free molecule moves perpendicularly to the surface towards a transition state (TS)
which is anchored. Hence, its translation and rotation are frustrated and its partition function includes
only vibration, qulf) , derived from Eq (S6), from which the reaction coordinate, perpendicular to the

surface, has been excluded. AE is the energy difference between the free molecule and the molecule

2D
trans

in the transition state [2]. In Eq (S12), the ¢ is the 2D-translational partition function for the free

molecule derived by the Eq (S7), where the third frustrated translational mode vanishes since it is the

reaction coordinate. The rotational partition function for a free molecule, g%, is calculated using Eqs

rot 2

(S8) or (S9) depending on its symmetry.



We have considered an active site as a hexagonal site made up from 7 Cu atoms where the reactants

and products in every elementary step occupy only one site on the surface. Consequently, the

coverage of free sites, 6,(¢) , is defined by;

n
0.(0=1-2,0,() (S13)
i
Where the &,(7) represents the coverage of the intermediates present in the reaction system.
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Fig. S3. Calculated reaction rate constants (k) as a function of temperature (T) for reactions of, (a) N,H, (x=1-4) dehydrogenation, (b)
N,H, (x=1-4) N-N decoupling, (c) NH, (x=1-3) dehydrogenation and, (d) interaction of NH, with N,H, (x=1-4) mechanisms.

The following are the rate equations of the elementary reactions applied in the simulations of

hydrazine decomposition on the Cu(111) surface.
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Differential equations in the TPR simulation:
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Differential equations in the batch reactor simulation:
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