Supporting Information

Photocatalytic H₂ production by a hybrid assembly of [FeFe]-hydrogenase model and CdSe quantum dot linked through a thiolato-functionalized cyclodextrin†

Minglun Cheng,¹ Mei Wang,*ª Shuai Zhang,ª Fengyuan Liu,ª Yong Yang,ª Boshun Wanª and Licheng Sunª⁶

ªState Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China. E-mail: symbueno@dlut.edu.cn
ªDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
⁶Department of Chemistry, KTH Royal Institute of Technology, Stockholm 10044, Sweden.
Fig. S1 UV-vis spectra of (a) β-CD-6-S-CdSe QDs sampled at the refluxing interval of 30 min and (b) MAA-CdSe QDs sampled at the refluxing interval of 3 h.
Fig. S2 Fluorescence spectra of (a) β-CD-6-S-CdSe QDs sampled at the refluxing interval of 30 min and (b) MAA-CdSe QDs sampled at the refluxing interval of 3 h.
Fig. S3 Mass spectrum of 1/β-CD-6-SH formed in situ in water.
Fig. S4 Cyclic voltammograms of β-CD-6-S-CdSe and MAA-CdSe QDs in water using a saturated KCl Ag/AgCl reference electrode at pH 4.5.
Fig. S5 Changes of UV-vis absorptions of β-CD-6-S-CdSe QDs in water at varying pH from 7 to 1.4.
Fig. S6 Long-time photocatalytic H₂ evolution of the system of β-CD-6-S-CdSe QDs (1.0 × 10⁻⁴ M), 1 (1.0 × 10⁻⁵ M), and H₂A (0.28 M) in water at pH 4.5 under illumination, with addition of extra 1 or β-CD-6-S-CdSe QDs after 14 h of illumination.